Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# import os | |
# import cv2 | |
# import numpy as np | |
# import imutils | |
# from keras.preprocessing.image import img_to_array | |
# from keras.models import load_model | |
# # Load the pre-trained models and define parameters | |
# detection_model_path = 'haarcascade_files/haarcascade_frontalface_default.xml' | |
# emotion_model_path = 'model4_0.83/model4_entire_model.h5' | |
# face_detection = cv2.CascadeClassifier(detection_model_path) | |
# emotion_classifier = load_model(emotion_model_path, compile=False) | |
# EMOTIONS = ['neutral', 'happiness', 'surprise', 'sadness', 'anger', 'disgust', 'fear', 'contempt', 'unknown'] | |
# # face_detector_mtcnn = MTCNN() | |
# classifier = load_model(emotion_model_path) | |
# def predict_emotion(frame): | |
# frame = imutils.resize(frame, width=300) | |
# gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) | |
# faces = face_detection.detectMultiScale(gray, scaleFactor=1.1, | |
# minNeighbors=5, minSize=(30, 30), | |
# flags=cv2.CASCADE_SCALE_IMAGE) | |
# for (fX, fY, fW, fH) in faces: | |
# # Extract the ROI of the face from the grayscale image, resize it to a fixed 28x28 pixels, and then prepare | |
# # the ROI for classification via the CNN | |
# roi = gray[fY:fY + fH, fX:fX + fW] | |
# roi = cv2.resize(roi, (48, 48)) | |
# roi = roi.astype("float") / 255.0 | |
# roi = img_to_array(roi) | |
# roi = np.expand_dims(roi, axis=0) | |
# preds = emotion_classifier.predict(roi)[0] | |
# label = EMOTIONS[preds.argmax()] | |
# # Overlay a box over the detected face | |
# cv2.putText(frame, label, (fX, fY - 10), | |
# cv2.FONT_HERSHEY_DUPLEX, 0.5, (238, 164, 64), 1, cv2.LINE_AA) | |
# cv2.rectangle(frame, (fX, fY), (fX + fW, fY + fH), | |
# (238, 164, 64), 2) | |
# return frame | |
# demo = gr.Interface( | |
# fn = predict_emotion, | |
# inputs = gr.Image(type="numpy"), | |
# outputs = gr.Image(), | |
# # gr.components.Image(label="Predicted Emotion"), | |
# # gr.components.Label(num_top_classes=2, label="Top 2 Probabilities") | |
# #flagging_options=["blurry", "incorrect", "other"], | |
# examples = [ | |
# os.path.join(os.path.dirname(__file__), "images/chandler.jpeg"), | |
# os.path.join(os.path.dirname(__file__), "images/janice.jpeg"), | |
# os.path.join(os.path.dirname(__file__), "images/joey.jpeg"), | |
# os.path.join(os.path.dirname(__file__), "images/phoebe.jpeg"), | |
# os.path.join(os.path.dirname(__file__), "images/rachel_monica.jpeg"), | |
# os.path.join(os.path.dirname(__file__), "images/ross.jpeg"), | |
# os.path.join(os.path.dirname(__file__), "images/gunther.jpeg") | |
# ], | |
# title = "How are you feeling?", | |
# theme = "shivi/calm_seafoam" | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
###################################################################################################################################################### | |
import gradio as gr | |
import os | |
import cv2 | |
import numpy as np | |
import imutils | |
from keras.preprocessing.image import img_to_array | |
from keras.models import load_model | |
# Load the pre-trained models and define parameters | |
detection_model_path = 'haarcascade_files/haarcascade_frontalface_default.xml' | |
emotion_model_path = 'model4_0.83/model4_entire_model.h5' | |
face_detection = cv2.CascadeClassifier(detection_model_path) | |
emotion_classifier = load_model(emotion_model_path, compile=False) | |
EMOTIONS = ['neutral', 'happiness', 'surprise', 'sadness', 'anger', 'disgust', 'fear', 'contempt', 'unknown'] | |
# Define a function to process each frame for emotion prediction | |
def predict_emotion(frame): | |
frame = imutils.resize(frame, width=300) | |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
faces = face_detection.detectMultiScale(gray, scaleFactor=1.1, | |
minNeighbors=5, minSize=(30, 30), | |
flags=cv2.CASCADE_SCALE_IMAGE) | |
for (fX, fY, fW, fH) in faces: | |
roi = gray[fY:fY + fH, fX:fX + fW] | |
roi = cv2.resize(roi, (48, 48)) | |
roi = roi.astype("float") / 255.0 | |
roi = img_to_array(roi) | |
roi = np.expand_dims(roi, axis=0) | |
preds = emotion_classifier.predict(roi)[0] | |
label = EMOTIONS[preds.argmax()] | |
cv2.putText(frame, label, (fX, fY - 10), | |
cv2.FONT_HERSHEY_DUPLEX, 0.5, (238, 164, 64), 1, cv2.LINE_AA) | |
cv2.rectangle(frame, (fX, fY), (fX + fW, fY + fH), | |
(238, 164, 64), 2) | |
return frame | |
# Define a function to process video input and output | |
def process_video(input_video_path, output_video_path): | |
# Open the video capture | |
cap = cv2.VideoCapture(input_video_path) | |
# Get video properties (dimensions, frame rate) | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
# Define video writer for output | |
out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'XVID'), fps, (width, height)) | |
# Process each frame in the video | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_with_emotion = predict_emotion(frame) | |
out.write(frame_with_emotion) | |
# Release video capture and writer | |
cap.release() | |
out.release() | |
# Define the Gradio interface | |
demo = gr.Interface( | |
fn=process_video, | |
inputs=["video", "file"], # Allow video input from webcam or file | |
outputs="video", # Output video with emotion overlay | |
capture_session=True, # Maintain capture session for video input | |
title="Emotion Detection in Video", | |
description="Upload a video file or use your webcam to detect emotions in real-time.", | |
theme="huggingface", | |
) | |
# Launch the Gradio interface | |
if __name__ == "__main__": | |
demo.launch() | |