23A475R's picture
Update app.py
082b842 verified
raw
history blame
5.93 kB
# import gradio as gr
# import os
# import cv2
# import numpy as np
# import imutils
# from keras.preprocessing.image import img_to_array
# from keras.models import load_model
# # Load the pre-trained models and define parameters
# detection_model_path = 'haarcascade_files/haarcascade_frontalface_default.xml'
# emotion_model_path = 'model4_0.83/model4_entire_model.h5'
# face_detection = cv2.CascadeClassifier(detection_model_path)
# emotion_classifier = load_model(emotion_model_path, compile=False)
# EMOTIONS = ['neutral', 'happiness', 'surprise', 'sadness', 'anger', 'disgust', 'fear', 'contempt', 'unknown']
# # face_detector_mtcnn = MTCNN()
# classifier = load_model(emotion_model_path)
# def predict_emotion(frame):
# frame = imutils.resize(frame, width=300)
# gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
# faces = face_detection.detectMultiScale(gray, scaleFactor=1.1,
# minNeighbors=5, minSize=(30, 30),
# flags=cv2.CASCADE_SCALE_IMAGE)
# for (fX, fY, fW, fH) in faces:
# # Extract the ROI of the face from the grayscale image, resize it to a fixed 28x28 pixels, and then prepare
# # the ROI for classification via the CNN
# roi = gray[fY:fY + fH, fX:fX + fW]
# roi = cv2.resize(roi, (48, 48))
# roi = roi.astype("float") / 255.0
# roi = img_to_array(roi)
# roi = np.expand_dims(roi, axis=0)
# preds = emotion_classifier.predict(roi)[0]
# label = EMOTIONS[preds.argmax()]
# # Overlay a box over the detected face
# cv2.putText(frame, label, (fX, fY - 10),
# cv2.FONT_HERSHEY_DUPLEX, 0.5, (238, 164, 64), 1, cv2.LINE_AA)
# cv2.rectangle(frame, (fX, fY), (fX + fW, fY + fH),
# (238, 164, 64), 2)
# return frame
# demo = gr.Interface(
# fn = predict_emotion,
# inputs = gr.Image(type="numpy"),
# outputs = gr.Image(),
# # gr.components.Image(label="Predicted Emotion"),
# # gr.components.Label(num_top_classes=2, label="Top 2 Probabilities")
# #flagging_options=["blurry", "incorrect", "other"],
# examples = [
# os.path.join(os.path.dirname(__file__), "images/chandler.jpeg"),
# os.path.join(os.path.dirname(__file__), "images/janice.jpeg"),
# os.path.join(os.path.dirname(__file__), "images/joey.jpeg"),
# os.path.join(os.path.dirname(__file__), "images/phoebe.jpeg"),
# os.path.join(os.path.dirname(__file__), "images/rachel_monica.jpeg"),
# os.path.join(os.path.dirname(__file__), "images/ross.jpeg"),
# os.path.join(os.path.dirname(__file__), "images/gunther.jpeg")
# ],
# title = "How are you feeling?",
# theme = "shivi/calm_seafoam"
# )
# if __name__ == "__main__":
# demo.launch()
######################################################################################################################################################
import gradio as gr
import os
import cv2
import numpy as np
import imutils
from keras.preprocessing.image import img_to_array
from keras.models import load_model
# Load the pre-trained models and define parameters
detection_model_path = 'haarcascade_files/haarcascade_frontalface_default.xml'
emotion_model_path = 'model4_0.83/model4_entire_model.h5'
face_detection = cv2.CascadeClassifier(detection_model_path)
emotion_classifier = load_model(emotion_model_path, compile=False)
EMOTIONS = ['neutral', 'happiness', 'surprise', 'sadness', 'anger', 'disgust', 'fear', 'contempt', 'unknown']
# Define a function to process each frame for emotion prediction
def predict_emotion(frame):
frame = imutils.resize(frame, width=300)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_detection.detectMultiScale(gray, scaleFactor=1.1,
minNeighbors=5, minSize=(30, 30),
flags=cv2.CASCADE_SCALE_IMAGE)
for (fX, fY, fW, fH) in faces:
roi = gray[fY:fY + fH, fX:fX + fW]
roi = cv2.resize(roi, (48, 48))
roi = roi.astype("float") / 255.0
roi = img_to_array(roi)
roi = np.expand_dims(roi, axis=0)
preds = emotion_classifier.predict(roi)[0]
label = EMOTIONS[preds.argmax()]
cv2.putText(frame, label, (fX, fY - 10),
cv2.FONT_HERSHEY_DUPLEX, 0.5, (238, 164, 64), 1, cv2.LINE_AA)
cv2.rectangle(frame, (fX, fY), (fX + fW, fY + fH),
(238, 164, 64), 2)
return frame
# Define a function to process video input and output
def process_video(input_video_path, output_video_path):
# Open the video capture
cap = cv2.VideoCapture(input_video_path)
# Get video properties (dimensions, frame rate)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
# Define video writer for output
out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'XVID'), fps, (width, height))
# Process each frame in the video
while True:
ret, frame = cap.read()
if not ret:
break
frame_with_emotion = predict_emotion(frame)
out.write(frame_with_emotion)
# Release video capture and writer
cap.release()
out.release()
# Define the Gradio interface
demo = gr.Interface(
fn=process_video,
inputs=["video", "file"], # Allow video input from webcam or file
outputs="video", # Output video with emotion overlay
capture_session=True, # Maintain capture session for video input
title="Emotion Detection in Video",
description="Upload a video file or use your webcam to detect emotions in real-time.",
theme="huggingface",
)
# Launch the Gradio interface
if __name__ == "__main__":
demo.launch()