|
import os |
|
import os.path as osp |
|
import re |
|
import sys |
|
import yaml |
|
import shutil |
|
import numpy as np |
|
import torch |
|
import click |
|
import warnings |
|
|
|
warnings.simplefilter("ignore") |
|
|
|
|
|
import random |
|
import yaml |
|
from munch import Munch |
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
import torchaudio |
|
import librosa |
|
|
|
from models import * |
|
from meldataset import build_dataloader |
|
from utils import * |
|
from losses import * |
|
from optimizers import build_optimizer |
|
import time |
|
|
|
from accelerate import Accelerator |
|
from accelerate.utils import LoggerType |
|
from accelerate import DistributedDataParallelKwargs |
|
|
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
import logging |
|
from accelerate.logging import get_logger |
|
|
|
logger = get_logger(__name__, log_level="DEBUG") |
|
|
|
|
|
@click.command() |
|
@click.option("-p", "--config_path", default="Configs/config.yml", type=str) |
|
def main(config_path): |
|
config = yaml.safe_load(open(config_path)) |
|
|
|
log_dir = config["log_dir"] |
|
if not osp.exists(log_dir): |
|
os.makedirs(log_dir, exist_ok=True) |
|
shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path))) |
|
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) |
|
accelerator = Accelerator( |
|
project_dir=log_dir, split_batches=True, kwargs_handlers=[ddp_kwargs] |
|
) |
|
if accelerator.is_main_process: |
|
writer = SummaryWriter(log_dir + "/tensorboard") |
|
|
|
|
|
file_handler = logging.FileHandler(osp.join(log_dir, "train.log")) |
|
file_handler.setLevel(logging.DEBUG) |
|
file_handler.setFormatter( |
|
logging.Formatter("%(levelname)s:%(asctime)s: %(message)s") |
|
) |
|
logger.logger.addHandler(file_handler) |
|
|
|
batch_size = config.get("batch_size", 10) |
|
device = accelerator.device |
|
|
|
epochs = config.get("epochs_1st", 200) |
|
save_freq = config.get("save_freq", 2) |
|
log_interval = config.get("log_interval", 10) |
|
saving_epoch = config.get("save_freq", 2) |
|
|
|
data_params = config.get("data_params", None) |
|
sr = config["preprocess_params"].get("sr", 24000) |
|
train_path = data_params["train_data"] |
|
val_path = data_params["val_data"] |
|
root_path = data_params["root_path"] |
|
min_length = data_params["min_length"] |
|
OOD_data = data_params["OOD_data"] |
|
|
|
max_len = config.get("max_len", 200) |
|
|
|
|
|
train_list, val_list = get_data_path_list(train_path, val_path) |
|
|
|
train_dataloader = build_dataloader( |
|
train_list, |
|
root_path, |
|
OOD_data=OOD_data, |
|
min_length=min_length, |
|
batch_size=batch_size, |
|
num_workers=2, |
|
dataset_config={}, |
|
device=device, |
|
) |
|
|
|
val_dataloader = build_dataloader( |
|
val_list, |
|
root_path, |
|
OOD_data=OOD_data, |
|
min_length=min_length, |
|
batch_size=batch_size, |
|
validation=True, |
|
num_workers=0, |
|
device=device, |
|
dataset_config={}, |
|
) |
|
|
|
with accelerator.main_process_first(): |
|
|
|
ASR_config = config.get("ASR_config", False) |
|
ASR_path = config.get("ASR_path", False) |
|
text_aligner = load_ASR_models(ASR_path, ASR_config) |
|
|
|
|
|
F0_path = config.get("F0_path", False) |
|
pitch_extractor = load_F0_models(F0_path) |
|
|
|
|
|
from Utils.PLBERT.util import load_plbert |
|
|
|
BERT_path = config.get("PLBERT_dir", False) |
|
plbert = load_plbert(BERT_path) |
|
|
|
scheduler_params = { |
|
"max_lr": float(config["optimizer_params"].get("lr", 1e-4)), |
|
"pct_start": float(config["optimizer_params"].get("pct_start", 0.0)), |
|
"epochs": epochs, |
|
"steps_per_epoch": len(train_dataloader), |
|
} |
|
|
|
model_params = recursive_munch(config["model_params"]) |
|
multispeaker = model_params.multispeaker |
|
model = build_model(model_params, text_aligner, pitch_extractor, plbert) |
|
|
|
best_loss = float("inf") |
|
loss_train_record = list([]) |
|
loss_test_record = list([]) |
|
|
|
loss_params = Munch(config["loss_params"]) |
|
TMA_epoch = loss_params.TMA_epoch |
|
|
|
for k in model: |
|
model[k] = accelerator.prepare(model[k]) |
|
|
|
train_dataloader, val_dataloader = accelerator.prepare( |
|
train_dataloader, val_dataloader |
|
) |
|
|
|
_ = [model[key].to(device) for key in model] |
|
|
|
|
|
optimizer = build_optimizer( |
|
{key: model[key].parameters() for key in model}, |
|
scheduler_params_dict={key: scheduler_params.copy() for key in model}, |
|
lr=float(config["optimizer_params"].get("lr", 1e-4)), |
|
) |
|
|
|
for k, v in optimizer.optimizers.items(): |
|
optimizer.optimizers[k] = accelerator.prepare(optimizer.optimizers[k]) |
|
optimizer.schedulers[k] = accelerator.prepare(optimizer.schedulers[k]) |
|
|
|
with accelerator.main_process_first(): |
|
if config.get("pretrained_model", "") != "": |
|
model, optimizer, start_epoch, iters = load_checkpoint( |
|
model, |
|
optimizer, |
|
config["pretrained_model"], |
|
load_only_params=config.get("load_only_params", True), |
|
) |
|
else: |
|
start_epoch = 0 |
|
iters = 0 |
|
|
|
|
|
try: |
|
n_down = model.text_aligner.module.n_down |
|
except: |
|
n_down = model.text_aligner.n_down |
|
|
|
|
|
stft_loss = MultiResolutionSTFTLoss().to(device) |
|
gl = GeneratorLoss(model.mpd, model.msd).to(device) |
|
dl = DiscriminatorLoss(model.mpd, model.msd).to(device) |
|
wl = WavLMLoss(model_params.slm.model, model.wd, sr, model_params.slm.sr).to(device) |
|
|
|
for epoch in range(start_epoch, epochs): |
|
running_loss = 0 |
|
start_time = time.time() |
|
|
|
_ = [model[key].train() for key in model] |
|
|
|
for i, batch in enumerate(train_dataloader): |
|
waves = batch[0] |
|
batch = [b.to(device) for b in batch[1:]] |
|
texts, input_lengths, _, _, mels, mel_input_length, _ = batch |
|
|
|
with torch.no_grad(): |
|
mask = length_to_mask(mel_input_length // (2**n_down)).to("cuda") |
|
text_mask = length_to_mask(input_lengths).to(texts.device) |
|
|
|
ppgs, s2s_pred, s2s_attn = model.text_aligner(mels, mask, texts) |
|
|
|
s2s_attn = s2s_attn.transpose(-1, -2) |
|
s2s_attn = s2s_attn[..., 1:] |
|
s2s_attn = s2s_attn.transpose(-1, -2) |
|
|
|
with torch.no_grad(): |
|
attn_mask = ( |
|
(~mask) |
|
.unsqueeze(-1) |
|
.expand(mask.shape[0], mask.shape[1], text_mask.shape[-1]) |
|
.float() |
|
.transpose(-1, -2) |
|
) |
|
attn_mask = ( |
|
attn_mask.float() |
|
* (~text_mask) |
|
.unsqueeze(-1) |
|
.expand(text_mask.shape[0], text_mask.shape[1], mask.shape[-1]) |
|
.float() |
|
) |
|
attn_mask = attn_mask < 1 |
|
|
|
s2s_attn.masked_fill_(attn_mask, 0.0) |
|
|
|
with torch.no_grad(): |
|
mask_ST = mask_from_lens( |
|
s2s_attn, input_lengths, mel_input_length // (2**n_down) |
|
) |
|
s2s_attn_mono = maximum_path(s2s_attn, mask_ST) |
|
|
|
|
|
t_en = model.text_encoder(texts, input_lengths, text_mask) |
|
|
|
|
|
if bool(random.getrandbits(1)): |
|
asr = t_en @ s2s_attn |
|
else: |
|
asr = t_en @ s2s_attn_mono |
|
|
|
|
|
mel_input_length_all = accelerator.gather( |
|
mel_input_length |
|
) |
|
mel_len = min( |
|
[int(mel_input_length_all.min().item() / 2 - 1), max_len // 2] |
|
) |
|
mel_len_st = int(mel_input_length.min().item() / 2 - 1) |
|
|
|
en = [] |
|
gt = [] |
|
wav = [] |
|
st = [] |
|
|
|
for bib in range(len(mel_input_length)): |
|
mel_length = int(mel_input_length[bib].item() / 2) |
|
|
|
random_start = np.random.randint(0, mel_length - mel_len) |
|
en.append(asr[bib, :, random_start : random_start + mel_len]) |
|
gt.append( |
|
mels[bib, :, (random_start * 2) : ((random_start + mel_len) * 2)] |
|
) |
|
|
|
y = waves[bib][ |
|
(random_start * 2) * 300 : ((random_start + mel_len) * 2) * 300 |
|
] |
|
wav.append(torch.from_numpy(y).to(device)) |
|
|
|
|
|
random_start = np.random.randint(0, mel_length - mel_len_st) |
|
st.append( |
|
mels[bib, :, (random_start * 2) : ((random_start + mel_len_st) * 2)] |
|
) |
|
|
|
en = torch.stack(en) |
|
gt = torch.stack(gt).detach() |
|
st = torch.stack(st).detach() |
|
|
|
wav = torch.stack(wav).float().detach() |
|
|
|
|
|
if gt.shape[-1] < 80: |
|
continue |
|
|
|
with torch.no_grad(): |
|
real_norm = log_norm(gt.unsqueeze(1)).squeeze(1).detach() |
|
F0_real, _, _ = model.pitch_extractor(gt.unsqueeze(1)) |
|
|
|
s = model.style_encoder( |
|
st.unsqueeze(1) if multispeaker else gt.unsqueeze(1) |
|
) |
|
|
|
y_rec = model.decoder(en, F0_real, real_norm, s) |
|
|
|
|
|
|
|
if epoch >= TMA_epoch: |
|
optimizer.zero_grad() |
|
d_loss = dl(wav.detach().unsqueeze(1).float(), y_rec.detach()).mean() |
|
accelerator.backward(d_loss) |
|
optimizer.step("msd") |
|
optimizer.step("mpd") |
|
else: |
|
d_loss = 0 |
|
|
|
|
|
optimizer.zero_grad() |
|
loss_mel = stft_loss(y_rec.squeeze(), wav.detach()) |
|
|
|
if epoch >= TMA_epoch: |
|
loss_s2s = 0 |
|
for _s2s_pred, _text_input, _text_length in zip( |
|
s2s_pred, texts, input_lengths |
|
): |
|
loss_s2s += F.cross_entropy( |
|
_s2s_pred[:_text_length], _text_input[:_text_length] |
|
) |
|
loss_s2s /= texts.size(0) |
|
|
|
loss_mono = F.l1_loss(s2s_attn, s2s_attn_mono) * 10 |
|
|
|
loss_gen_all = gl(wav.detach().unsqueeze(1).float(), y_rec).mean() |
|
loss_slm = wl(wav.detach(), y_rec).mean() |
|
|
|
g_loss = ( |
|
loss_params.lambda_mel * loss_mel |
|
+ loss_params.lambda_mono * loss_mono |
|
+ loss_params.lambda_s2s * loss_s2s |
|
+ loss_params.lambda_gen * loss_gen_all |
|
+ loss_params.lambda_slm * loss_slm |
|
) |
|
|
|
else: |
|
loss_s2s = 0 |
|
loss_mono = 0 |
|
loss_gen_all = 0 |
|
loss_slm = 0 |
|
g_loss = loss_mel |
|
|
|
running_loss += accelerator.gather(loss_mel).mean().item() |
|
|
|
accelerator.backward(g_loss) |
|
|
|
optimizer.step("text_encoder") |
|
optimizer.step("style_encoder") |
|
optimizer.step("decoder") |
|
|
|
if epoch >= TMA_epoch: |
|
optimizer.step("text_aligner") |
|
optimizer.step("pitch_extractor") |
|
|
|
iters = iters + 1 |
|
|
|
if (i + 1) % log_interval == 0 and accelerator.is_main_process: |
|
log_print( |
|
"Epoch [%d/%d], Step [%d/%d], Mel Loss: %.5f, Gen Loss: %.5f, Disc Loss: %.5f, Mono Loss: %.5f, S2S Loss: %.5f, SLM Loss: %.5f" |
|
% ( |
|
epoch + 1, |
|
epochs, |
|
i + 1, |
|
len(train_list) // batch_size, |
|
running_loss / log_interval, |
|
loss_gen_all, |
|
d_loss, |
|
loss_mono, |
|
loss_s2s, |
|
loss_slm, |
|
), |
|
logger, |
|
) |
|
|
|
writer.add_scalar("train/mel_loss", running_loss / log_interval, iters) |
|
writer.add_scalar("train/gen_loss", loss_gen_all, iters) |
|
writer.add_scalar("train/d_loss", d_loss, iters) |
|
writer.add_scalar("train/mono_loss", loss_mono, iters) |
|
writer.add_scalar("train/s2s_loss", loss_s2s, iters) |
|
writer.add_scalar("train/slm_loss", loss_slm, iters) |
|
|
|
running_loss = 0 |
|
|
|
print("Time elasped:", time.time() - start_time) |
|
|
|
loss_test = 0 |
|
|
|
_ = [model[key].eval() for key in model] |
|
|
|
with torch.no_grad(): |
|
iters_test = 0 |
|
for batch_idx, batch in enumerate(val_dataloader): |
|
optimizer.zero_grad() |
|
|
|
waves = batch[0] |
|
batch = [b.to(device) for b in batch[1:]] |
|
texts, input_lengths, _, _, mels, mel_input_length, _ = batch |
|
|
|
with torch.no_grad(): |
|
mask = length_to_mask(mel_input_length // (2**n_down)).to("cuda") |
|
ppgs, s2s_pred, s2s_attn = model.text_aligner(mels, mask, texts) |
|
|
|
s2s_attn = s2s_attn.transpose(-1, -2) |
|
s2s_attn = s2s_attn[..., 1:] |
|
s2s_attn = s2s_attn.transpose(-1, -2) |
|
|
|
text_mask = length_to_mask(input_lengths).to(texts.device) |
|
attn_mask = ( |
|
(~mask) |
|
.unsqueeze(-1) |
|
.expand(mask.shape[0], mask.shape[1], text_mask.shape[-1]) |
|
.float() |
|
.transpose(-1, -2) |
|
) |
|
attn_mask = ( |
|
attn_mask.float() |
|
* (~text_mask) |
|
.unsqueeze(-1) |
|
.expand(text_mask.shape[0], text_mask.shape[1], mask.shape[-1]) |
|
.float() |
|
) |
|
attn_mask = attn_mask < 1 |
|
s2s_attn.masked_fill_(attn_mask, 0.0) |
|
|
|
|
|
t_en = model.text_encoder(texts, input_lengths, text_mask) |
|
|
|
asr = t_en @ s2s_attn |
|
|
|
|
|
mel_input_length_all = accelerator.gather( |
|
mel_input_length |
|
) |
|
mel_len = min( |
|
[int(mel_input_length.min().item() / 2 - 1), max_len // 2] |
|
) |
|
|
|
en = [] |
|
gt = [] |
|
wav = [] |
|
for bib in range(len(mel_input_length)): |
|
mel_length = int(mel_input_length[bib].item() / 2) |
|
|
|
random_start = np.random.randint(0, mel_length - mel_len) |
|
en.append(asr[bib, :, random_start : random_start + mel_len]) |
|
gt.append( |
|
mels[ |
|
bib, :, (random_start * 2) : ((random_start + mel_len) * 2) |
|
] |
|
) |
|
y = waves[bib][ |
|
(random_start * 2) * 300 : ((random_start + mel_len) * 2) * 300 |
|
] |
|
wav.append(torch.from_numpy(y).to("cuda")) |
|
|
|
wav = torch.stack(wav).float().detach() |
|
|
|
en = torch.stack(en) |
|
gt = torch.stack(gt).detach() |
|
|
|
F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1)) |
|
s = model.style_encoder(gt.unsqueeze(1)) |
|
real_norm = log_norm(gt.unsqueeze(1)).squeeze(1) |
|
y_rec = model.decoder(en, F0_real, real_norm, s) |
|
|
|
loss_mel = stft_loss(y_rec.squeeze(), wav.detach()) |
|
|
|
loss_test += accelerator.gather(loss_mel).mean().item() |
|
iters_test += 1 |
|
|
|
if accelerator.is_main_process: |
|
print("Epochs:", epoch + 1) |
|
log_print( |
|
"Validation loss: %.3f" % (loss_test / iters_test) + "\n\n\n\n", logger |
|
) |
|
print("\n\n\n") |
|
writer.add_scalar("eval/mel_loss", loss_test / iters_test, epoch + 1) |
|
attn_image = get_image(s2s_attn[0].cpu().numpy().squeeze()) |
|
writer.add_figure("eval/attn", attn_image, epoch) |
|
|
|
with torch.no_grad(): |
|
for bib in range(len(asr)): |
|
mel_length = int(mel_input_length[bib].item()) |
|
gt = mels[bib, :, :mel_length].unsqueeze(0) |
|
en = asr[bib, :, : mel_length // 2].unsqueeze(0) |
|
|
|
F0_real, _, _ = model.pitch_extractor(gt.unsqueeze(1)) |
|
F0_real = F0_real.unsqueeze(0) |
|
s = model.style_encoder(gt.unsqueeze(1)) |
|
real_norm = log_norm(gt.unsqueeze(1)).squeeze(1) |
|
|
|
y_rec = model.decoder(en, F0_real, real_norm, s) |
|
|
|
writer.add_audio( |
|
"eval/y" + str(bib), |
|
y_rec.cpu().numpy().squeeze(), |
|
epoch, |
|
sample_rate=sr, |
|
) |
|
if epoch == 0: |
|
writer.add_audio( |
|
"gt/y" + str(bib), |
|
waves[bib].squeeze(), |
|
epoch, |
|
sample_rate=sr, |
|
) |
|
|
|
if bib >= 6: |
|
break |
|
|
|
if epoch % saving_epoch == 0: |
|
if (loss_test / iters_test) < best_loss: |
|
best_loss = loss_test / iters_test |
|
print("Saving..") |
|
state = { |
|
"net": {key: model[key].state_dict() for key in model}, |
|
"optimizer": optimizer.state_dict(), |
|
"iters": iters, |
|
"val_loss": loss_test / iters_test, |
|
"epoch": epoch, |
|
} |
|
save_path = osp.join(log_dir, "epoch_1st_%05d.pth" % epoch) |
|
torch.save(state, save_path) |
|
|
|
if accelerator.is_main_process: |
|
print("Saving..") |
|
state = { |
|
"net": {key: model[key].state_dict() for key in model}, |
|
"optimizer": optimizer.state_dict(), |
|
"iters": iters, |
|
"val_loss": loss_test / iters_test, |
|
"epoch": epoch, |
|
} |
|
save_path = osp.join(log_dir, config.get("first_stage_path", "first_stage.pth")) |
|
torch.save(state, save_path) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|