|
|
|
import os |
|
import os.path as osp |
|
import time |
|
import random |
|
import numpy as np |
|
import random |
|
import soundfile as sf |
|
import librosa |
|
|
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
import torchaudio |
|
from torch.utils.data import DataLoader |
|
|
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
logger.setLevel(logging.DEBUG) |
|
|
|
import pandas as pd |
|
|
|
_pad = "$" |
|
_punctuation = ';:,.!?¡¿—…"«»“” ' |
|
_letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" |
|
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ" |
|
|
|
|
|
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa) |
|
|
|
dicts = {} |
|
for i in range(len((symbols))): |
|
dicts[symbols[i]] = i |
|
|
|
|
|
class TextCleaner: |
|
def __init__(self, dummy=None): |
|
self.word_index_dictionary = dicts |
|
|
|
def __call__(self, text): |
|
indexes = [] |
|
for char in text: |
|
try: |
|
indexes.append(self.word_index_dictionary[char]) |
|
except KeyError: |
|
print(text) |
|
return indexes |
|
|
|
|
|
np.random.seed(1) |
|
random.seed(1) |
|
SPECT_PARAMS = {"n_fft": 2048, "win_length": 1200, "hop_length": 300} |
|
MEL_PARAMS = { |
|
"n_mels": 80, |
|
} |
|
|
|
to_mel = torchaudio.transforms.MelSpectrogram( |
|
n_mels=80, n_fft=2048, win_length=1200, hop_length=300 |
|
) |
|
mean, std = -4, 4 |
|
|
|
|
|
def preprocess(wave): |
|
wave_tensor = torch.from_numpy(wave).float() |
|
mel_tensor = to_mel(wave_tensor) |
|
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std |
|
return mel_tensor |
|
|
|
|
|
class FilePathDataset(torch.utils.data.Dataset): |
|
def __init__( |
|
self, |
|
data_list, |
|
root_path, |
|
sr=24000, |
|
data_augmentation=False, |
|
validation=False, |
|
OOD_data="Data/OOD_texts.txt", |
|
min_length=50, |
|
): |
|
spect_params = SPECT_PARAMS |
|
mel_params = MEL_PARAMS |
|
|
|
_data_list = [l[:-1].split("|") for l in data_list] |
|
self.data_list = [data if len(data) == 3 else (*data, 0) for data in _data_list] |
|
self.text_cleaner = TextCleaner() |
|
self.sr = sr |
|
|
|
self.df = pd.DataFrame(self.data_list) |
|
|
|
self.to_melspec = torchaudio.transforms.MelSpectrogram(**MEL_PARAMS) |
|
|
|
self.mean, self.std = -4, 4 |
|
self.data_augmentation = data_augmentation and (not validation) |
|
self.max_mel_length = 192 |
|
|
|
self.min_length = min_length |
|
with open(OOD_data, "r") as f: |
|
tl = f.readlines() |
|
idx = 1 if ".wav" in tl[0].split("|")[0] else 0 |
|
self.ptexts = [t.split("|")[idx] for t in tl] |
|
|
|
self.root_path = root_path |
|
|
|
def __len__(self): |
|
return len(self.data_list) |
|
|
|
def __getitem__(self, idx): |
|
data = self.data_list[idx] |
|
path = data[0] |
|
|
|
wave, text_tensor, speaker_id = self._load_tensor(data) |
|
|
|
mel_tensor = preprocess(wave).squeeze() |
|
|
|
acoustic_feature = mel_tensor.squeeze() |
|
length_feature = acoustic_feature.size(1) |
|
acoustic_feature = acoustic_feature[:, : (length_feature - length_feature % 2)] |
|
|
|
|
|
ref_data = (self.df[self.df[2] == str(speaker_id)]).sample(n=1).iloc[0].tolist() |
|
ref_mel_tensor, ref_label = self._load_data(ref_data[:3]) |
|
|
|
|
|
|
|
ps = "" |
|
|
|
while len(ps) < self.min_length: |
|
rand_idx = np.random.randint(0, len(self.ptexts) - 1) |
|
ps = self.ptexts[rand_idx] |
|
|
|
text = self.text_cleaner(ps) |
|
text.insert(0, 0) |
|
text.append(0) |
|
|
|
ref_text = torch.LongTensor(text) |
|
|
|
return ( |
|
speaker_id, |
|
acoustic_feature, |
|
text_tensor, |
|
ref_text, |
|
ref_mel_tensor, |
|
ref_label, |
|
path, |
|
wave, |
|
) |
|
|
|
def _load_tensor(self, data): |
|
wave_path, text, speaker_id = data |
|
speaker_id = int(speaker_id) |
|
wave, sr = sf.read(osp.join(self.root_path, wave_path)) |
|
if wave.shape[-1] == 2: |
|
wave = wave[:, 0].squeeze() |
|
if sr != 24000: |
|
wave = librosa.resample(wave, orig_sr=sr, target_sr=24000) |
|
print(wave_path, sr) |
|
|
|
wave = np.concatenate([np.zeros([5000]), wave, np.zeros([5000])], axis=0) |
|
|
|
text = self.text_cleaner(text) |
|
|
|
text.insert(0, 0) |
|
text.append(0) |
|
|
|
text = torch.LongTensor(text) |
|
|
|
return wave, text, speaker_id |
|
|
|
def _load_data(self, data): |
|
wave, text_tensor, speaker_id = self._load_tensor(data) |
|
mel_tensor = preprocess(wave).squeeze() |
|
|
|
mel_length = mel_tensor.size(1) |
|
if mel_length > self.max_mel_length: |
|
random_start = np.random.randint(0, mel_length - self.max_mel_length) |
|
mel_tensor = mel_tensor[ |
|
:, random_start : random_start + self.max_mel_length |
|
] |
|
|
|
return mel_tensor, speaker_id |
|
|
|
|
|
class Collater(object): |
|
""" |
|
Args: |
|
adaptive_batch_size (bool): if true, decrease batch size when long data comes. |
|
""" |
|
|
|
def __init__(self, return_wave=False): |
|
self.text_pad_index = 0 |
|
self.min_mel_length = 192 |
|
self.max_mel_length = 192 |
|
self.return_wave = return_wave |
|
|
|
def __call__(self, batch): |
|
|
|
batch_size = len(batch) |
|
|
|
|
|
lengths = [b[1].shape[1] for b in batch] |
|
batch_indexes = np.argsort(lengths)[::-1] |
|
batch = [batch[bid] for bid in batch_indexes] |
|
|
|
nmels = batch[0][1].size(0) |
|
max_mel_length = max([b[1].shape[1] for b in batch]) |
|
max_text_length = max([b[2].shape[0] for b in batch]) |
|
max_rtext_length = max([b[3].shape[0] for b in batch]) |
|
|
|
labels = torch.zeros((batch_size)).long() |
|
mels = torch.zeros((batch_size, nmels, max_mel_length)).float() |
|
texts = torch.zeros((batch_size, max_text_length)).long() |
|
ref_texts = torch.zeros((batch_size, max_rtext_length)).long() |
|
|
|
input_lengths = torch.zeros(batch_size).long() |
|
ref_lengths = torch.zeros(batch_size).long() |
|
output_lengths = torch.zeros(batch_size).long() |
|
ref_mels = torch.zeros((batch_size, nmels, self.max_mel_length)).float() |
|
ref_labels = torch.zeros((batch_size)).long() |
|
paths = ["" for _ in range(batch_size)] |
|
waves = [None for _ in range(batch_size)] |
|
|
|
for bid, ( |
|
label, |
|
mel, |
|
text, |
|
ref_text, |
|
ref_mel, |
|
ref_label, |
|
path, |
|
wave, |
|
) in enumerate(batch): |
|
mel_size = mel.size(1) |
|
text_size = text.size(0) |
|
rtext_size = ref_text.size(0) |
|
labels[bid] = label |
|
mels[bid, :, :mel_size] = mel |
|
texts[bid, :text_size] = text |
|
ref_texts[bid, :rtext_size] = ref_text |
|
input_lengths[bid] = text_size |
|
ref_lengths[bid] = rtext_size |
|
output_lengths[bid] = mel_size |
|
paths[bid] = path |
|
ref_mel_size = ref_mel.size(1) |
|
ref_mels[bid, :, :ref_mel_size] = ref_mel |
|
|
|
ref_labels[bid] = ref_label |
|
waves[bid] = wave |
|
|
|
return ( |
|
waves, |
|
texts, |
|
input_lengths, |
|
ref_texts, |
|
ref_lengths, |
|
mels, |
|
output_lengths, |
|
ref_mels, |
|
) |
|
|
|
|
|
def build_dataloader( |
|
path_list, |
|
root_path, |
|
validation=False, |
|
OOD_data="Data/OOD_texts.txt", |
|
min_length=50, |
|
batch_size=4, |
|
num_workers=1, |
|
device="cpu", |
|
collate_config={}, |
|
dataset_config={}, |
|
): |
|
dataset = FilePathDataset( |
|
path_list, |
|
root_path, |
|
OOD_data=OOD_data, |
|
min_length=min_length, |
|
validation=validation, |
|
**dataset_config |
|
) |
|
collate_fn = Collater(**collate_config) |
|
data_loader = DataLoader( |
|
dataset, |
|
batch_size=batch_size, |
|
shuffle=(not validation), |
|
num_workers=num_workers, |
|
drop_last=(not validation), |
|
collate_fn=collate_fn, |
|
pin_memory=(device != "cpu"), |
|
) |
|
|
|
return data_loader |
|
|