Update app.py
Browse files
app.py
CHANGED
@@ -1,68 +1,25 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import T5Tokenizer,
|
3 |
-
import numpy as np
|
4 |
|
5 |
-
MODEL_NAME_OR_PATH = "t5-
|
6 |
-
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME_OR_PATH)
|
7 |
-
model =
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
"
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
"top_p": 0.95,
|
17 |
-
"num_return_sequences": 1
|
18 |
-
}
|
19 |
-
|
20 |
-
def skip_special_tokens(text, special_tokens):
|
21 |
-
for token in special_tokens:
|
22 |
-
text = text.replace(token, "")
|
23 |
-
return text
|
24 |
-
|
25 |
-
def target_postprocessing(texts, special_tokens):
|
26 |
-
if not isinstance(texts, list):
|
27 |
-
texts = [texts]
|
28 |
-
new_texts = []
|
29 |
-
for text in texts:
|
30 |
-
text = skip_special_tokens(text, special_tokens)
|
31 |
-
new_texts.append(text)
|
32 |
-
return new_texts
|
33 |
-
|
34 |
-
def generate_recipe(items):
|
35 |
-
inputs = [prefix + items]
|
36 |
-
inputs = tokenizer(
|
37 |
-
inputs,
|
38 |
-
max_length=256,
|
39 |
-
padding="max_length",
|
40 |
-
truncation=True,
|
41 |
-
return_tensors="jax"
|
42 |
-
)
|
43 |
-
input_ids = inputs.input_ids
|
44 |
-
attention_mask = inputs.attention_mask
|
45 |
-
|
46 |
-
output_ids = model.generate(
|
47 |
-
input_ids=input_ids,
|
48 |
-
attention_mask=attention_mask,
|
49 |
-
**generation_kwargs
|
50 |
-
)
|
51 |
-
|
52 |
-
# Convert output IDs to numpy array
|
53 |
-
output_ids = np.array(output_ids)
|
54 |
-
|
55 |
-
generated_recipe = tokenizer.batch_decode(output_ids, skip_special_tokens=False)
|
56 |
-
generated_recipe = target_postprocessing(generated_recipe, tokenizer.all_special_tokens)
|
57 |
-
return generated_recipe[0]
|
58 |
|
59 |
def main():
|
60 |
st.title("Recipe Generation")
|
61 |
-
|
62 |
-
items = st.text_input("Enter food items separated by comma (e.g., apple, cucumber):")
|
63 |
if st.button("Generate Recipe"):
|
64 |
-
generated_recipe = generate_recipe(
|
65 |
-
st.
|
|
|
66 |
|
67 |
if __name__ == "__main__":
|
68 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
|
|
3 |
|
4 |
+
MODEL_NAME_OR_PATH = "flax-community/t5-recipe-generation"
|
5 |
+
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True)
|
6 |
+
model = T5ForConditionalGeneration.from_pretrained(MODEL_NAME_OR_PATH)
|
7 |
|
8 |
+
def generate_recipe(input_items):
|
9 |
+
prefix = "items: "
|
10 |
+
input_text = prefix + input_items
|
11 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
12 |
+
output_ids = model.generate(input_ids)
|
13 |
+
generated_recipe = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
14 |
+
return generated_recipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def main():
|
17 |
st.title("Recipe Generation")
|
18 |
+
input_items = st.text_area("Enter the recipe instructions:")
|
|
|
19 |
if st.button("Generate Recipe"):
|
20 |
+
generated_recipe = generate_recipe(input_items)
|
21 |
+
st.subheader("Generated Recipe:")
|
22 |
+
st.text(generated_recipe)
|
23 |
|
24 |
if __name__ == "__main__":
|
25 |
main()
|