|
from transformers import FlaxAutoModelForSeq2SeqLM, AutoTokenizer |
|
import gradio as gr |
|
|
|
MODEL_NAME_OR_PATH = "flax-community/t5-recipe-generation" |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True) |
|
model = FlaxAutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME_OR_PATH) |
|
|
|
prefix = "items: " |
|
generation_kwargs = { |
|
"max_length": 512, |
|
"min_length": 64, |
|
"no_repeat_ngram_size": 3, |
|
"do_sample": True, |
|
"top_k": 60, |
|
"top_p": 0.95 |
|
} |
|
|
|
special_tokens = tokenizer.all_special_tokens |
|
tokens_map = { |
|
"<sep>": "--", |
|
"<section>": "\n" |
|
} |
|
|
|
def skip_special_tokens(text, special_tokens): |
|
for token in special_tokens: |
|
text = text.replace(token, "") |
|
return text |
|
|
|
def target_postprocessing(texts, special_tokens): |
|
if not isinstance(texts, list): |
|
texts = [texts] |
|
new_texts = [] |
|
for text in texts: |
|
text = skip_special_tokens(text, special_tokens) |
|
for k, v in tokens_map.items(): |
|
text = text.replace(k, v) |
|
new_texts.append(text) |
|
return new_texts |
|
|
|
def generation_function(texts): |
|
_inputs = texts if isinstance(texts, list) else [texts] |
|
inputs = [prefix + inp for inp in _inputs] |
|
inputs = tokenizer( |
|
inputs, |
|
max_length=256, |
|
padding="max_length", |
|
truncation=True, |
|
return_tensors="jax" |
|
) |
|
input_ids = inputs.input_ids |
|
attention_mask = inputs.attention_mask |
|
output_ids = model.generate( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
**generation_kwargs |
|
) |
|
generated = output_ids.sequences |
|
generated_recipe = target_postprocessing( |
|
tokenizer.batch_decode(generated, skip_special_tokens=False), |
|
special_tokens |
|
) |
|
return generated_recipe |
|
|
|
iface = gr.Interface( |
|
fn=generation_function, |
|
inputs="text", |
|
outputs="text", |
|
title="Recipe Generation", |
|
description="Generate a recipe based on an input text." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|