1toTree's picture
Upload with huggingface_hub
21231ee
raw
history blame
23.2 kB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import paddle
import paddle.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..modeling_utils import ModelMixin
from ..utils import BaseOutput
from .unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
@dataclass
class DecoderOutput(BaseOutput):
"""
Output of decoding method.
Args:
sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)`):
Decoded output sample of the model. Output of the last layer of the model.
"""
sample: paddle.Tensor
@dataclass
class VQEncoderOutput(BaseOutput):
"""
Output of VQModel encoding method.
Args:
latents (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)`):
Encoded output sample of the model. Output of the last layer of the model.
"""
latents: paddle.Tensor
@dataclass
class AutoencoderKLOutput(BaseOutput):
"""
Output of AutoencoderKL encoding method.
Args:
latent_dist (`DiagonalGaussianDistribution`):
Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`.
`DiagonalGaussianDistribution` allows for sampling latents from the distribution.
"""
latent_dist: "DiagonalGaussianDistribution"
class Encoder(nn.Layer):
def __init__(
self,
in_channels=3,
out_channels=3,
down_block_types=("DownEncoderBlock2D",),
block_out_channels=(64,),
layers_per_block=2,
norm_num_groups=32,
act_fn="silu",
double_z=True,
):
super().__init__()
self.layers_per_block = layers_per_block
self.conv_in = nn.Conv2D(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1)
self.mid_block = None
self.down_blocks = nn.LayerList([])
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=self.layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
add_downsample=not is_final_block,
resnet_eps=1e-6,
downsample_padding=0,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attn_num_head_channels=None,
temb_channels=None,
)
self.down_blocks.append(down_block)
# mid
self.mid_block = UNetMidBlock2D(
in_channels=block_out_channels[-1],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
output_scale_factor=1,
resnet_time_scale_shift="default",
attn_num_head_channels=None,
resnet_groups=norm_num_groups,
temb_channels=None,
)
# out
self.conv_norm_out = nn.GroupNorm(
num_channels=block_out_channels[-1], num_groups=norm_num_groups, epsilon=1e-6
)
self.conv_act = nn.Silu()
conv_out_channels = 2 * out_channels if double_z else out_channels
self.conv_out = nn.Conv2D(block_out_channels[-1], conv_out_channels, 3, padding=1)
def forward(self, x):
sample = x
sample = self.conv_in(sample)
# down
for down_block in self.down_blocks:
sample = down_block(sample)
# middle
sample = self.mid_block(sample)
# post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return sample
class Decoder(nn.Layer):
def __init__(
self,
in_channels=3,
out_channels=3,
up_block_types=("UpDecoderBlock2D",),
block_out_channels=(64,),
layers_per_block=2,
norm_num_groups=32,
act_fn="silu",
):
super().__init__()
self.layers_per_block = layers_per_block
self.conv_in = nn.Conv2D(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1)
self.mid_block = None
self.up_blocks = nn.LayerList([])
# mid
self.mid_block = UNetMidBlock2D(
in_channels=block_out_channels[-1],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
output_scale_factor=1,
resnet_time_scale_shift="default",
attn_num_head_channels=None,
resnet_groups=norm_num_groups,
temb_channels=None,
)
# up
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
up_block = get_up_block(
up_block_type,
num_layers=self.layers_per_block + 1,
in_channels=prev_output_channel,
out_channels=output_channel,
prev_output_channel=None,
add_upsample=not is_final_block,
resnet_eps=1e-6,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attn_num_head_channels=None,
temb_channels=None,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, epsilon=1e-6)
self.conv_act = nn.Silu()
self.conv_out = nn.Conv2D(block_out_channels[0], out_channels, 3, padding=1)
def forward(self, z):
sample = z
sample = self.conv_in(sample)
# middle
sample = self.mid_block(sample)
# up
for up_block in self.up_blocks:
sample = up_block(sample)
# post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return sample
class VectorQuantizer(nn.Layer):
"""
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix
multiplications and allows for post-hoc remapping of indices.
"""
# NOTE: due to a bug the beta term was applied to the wrong term. for
# backwards compatibility we use the buggy version by default, but you can
# specify legacy=False to fix it.
def __init__(
self, n_e, vq_embed_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True
):
super().__init__()
self.n_e = n_e
self.vq_embed_dim = vq_embed_dim
self.beta = beta
self.legacy = legacy
self.embedding = nn.Embedding(
self.n_e, self.vq_embed_dim, weight_attr=nn.initializer.Uniform(-1.0 / self.n_e, 1.0 / self.n_e)
)
self.remap = remap
if self.remap is not None:
self.register_buffer("used", paddle.to_tensor(np.load(self.remap)))
self.re_embed = self.used.shape[0]
self.unknown_index = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
self.unknown_index = self.re_embed
self.re_embed = self.re_embed + 1
print(
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices."
)
else:
self.re_embed = n_e
self.sane_index_shape = sane_index_shape
def remap_to_used(self, inds):
ishape = inds.shape
assert len(ishape) > 1
inds = inds.reshape([ishape[0], -1])
used = self.used.cast(inds.dtype)
match = (inds[:, :, None] == used[None, None, ...]).cast("int64")
new = match.argmax(-1)
unknown = match.sum(2) < 1
if self.unknown_index == "random":
new[unknown] = paddle.randint(0, self.re_embed, shape=new[unknown].shape)
else:
new[unknown] = self.unknown_index
return new.reshape(ishape)
def unmap_to_all(self, inds):
ishape = inds.shape
assert len(ishape) > 1
inds = inds.reshape([ishape[0], -1])
used = self.used.cast(inds.dtype)
if self.re_embed > self.used.shape[0]: # extra token
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
back = paddle.take_along_axis(used[None, :][inds.shape[0] * [0], :], inds, axis=1)
return back.reshape(ishape)
def forward(self, z):
# reshape z -> (batch, height, width, channel) and flatten
z = z.transpose([0, 2, 3, 1])
z_flattened = z.reshape([-1, self.vq_embed_dim])
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
d = (
paddle.sum(z_flattened**2, axis=1, keepdim=True)
+ paddle.sum(self.embedding.weight**2, axis=1)
- 2 * paddle.matmul(z_flattened, self.embedding.weight, transpose_y=True)
)
min_encoding_indices = paddle.argmin(d, axis=1)
z_q = self.embedding(min_encoding_indices).reshape(z.shape)
perplexity = None
min_encodings = None
# compute loss for embedding
if not self.legacy:
loss = self.beta * paddle.mean((z_q.detach() - z) ** 2) + paddle.mean((z_q - z.detach()) ** 2)
else:
loss = paddle.mean((z_q.detach() - z) ** 2) + self.beta * paddle.mean((z_q - z.detach()) ** 2)
# preserve gradients
z_q = z + (z_q - z).detach()
# reshape back to match original input shape
z_q = z_q.transpose([0, 3, 1, 2])
if self.remap is not None:
min_encoding_indices = min_encoding_indices.reshape([z.shape[0], -1]) # add batch axis
min_encoding_indices = self.remap_to_used(min_encoding_indices)
min_encoding_indices = min_encoding_indices.reshape([-1, 1]) # flatten
if self.sane_index_shape:
min_encoding_indices = min_encoding_indices.reshape([z_q.shape[0], z_q.shape[2], z_q.shape[3]])
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def get_codebook_entry(self, indices, shape):
# shape specifying (batch, height, width, channel)
if self.remap is not None:
indices = indices.reshape([shape[0], -1]) # add batch axis
indices = self.unmap_to_all(indices)
indices = indices.reshape(
[
-1,
]
) # flatten again
# get quantized latent vectors
z_q = self.embedding(indices)
if shape is not None:
z_q = z_q.reshape(shape)
# reshape back to match original input shape
z_q = z_q.transpose([0, 3, 1, 2])
return z_q
class DiagonalGaussianDistribution(object):
def __init__(self, parameters, deterministic=False):
self.parameters = parameters
self.mean, self.logvar = paddle.chunk(parameters, 2, axis=1)
self.logvar = paddle.clip(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = paddle.exp(0.5 * self.logvar)
self.var = paddle.exp(self.logvar)
if self.deterministic:
self.var = self.std = paddle.zeros_like(self.mean, dtype=self.parameters.dtype)
def sample(self, generator: Optional[paddle.Generator] = None) -> paddle.Tensor:
sample = paddle.randn(self.mean.shape, generator=generator)
# make sure sample is as the parameters and has same dtype
sample = sample.cast(self.parameters.dtype)
x = self.mean + self.std * sample
return x
def kl(self, other=None):
if self.deterministic:
return paddle.to_tensor([0.0])
else:
if other is None:
return 0.5 * paddle.sum(paddle.pow(self.mean, 2) + self.var - 1.0 - self.logvar, axis=[1, 2, 3])
else:
return 0.5 * paddle.sum(
paddle.pow(self.mean - other.mean, 2) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar,
axis=[1, 2, 3],
)
def nll(self, sample, axis=[1, 2, 3]):
if self.deterministic:
return paddle.to_tensor([0.0])
logtwopi = np.log(2.0 * np.pi)
return 0.5 * paddle.sum(logtwopi + self.logvar + paddle.pow(sample - self.mean, 2) / self.var, axis=axis)
def mode(self):
return self.mean
class VQModel(ModelMixin, ConfigMixin):
r"""VQ-VAE model from the paper Neural Discrete Representation Learning by Aaron van den Oord, Oriol Vinyals and Koray
Kavukcuoglu.
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
implements for all the model (such as downloading or saving, etc.)
Parameters:
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to :
obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types.
up_block_types (`Tuple[str]`, *optional*, defaults to :
obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types.
block_out_channels (`Tuple[int]`, *optional*, defaults to :
obj:`(64,)`): Tuple of block output channels.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space.
sample_size (`int`, *optional*, defaults to `32`): TODO
num_vq_embeddings (`int`, *optional*, defaults to `256`): Number of codebook vectors in the VQ-VAE.
vq_embed_dim (`int`, *optional*): Hidden dim of codebook vectors in the VQ-VAE.
"""
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
block_out_channels: Tuple[int] = (64,),
layers_per_block: int = 1,
act_fn: str = "silu",
latent_channels: int = 3,
sample_size: int = 32,
num_vq_embeddings: int = 256,
norm_num_groups: int = 32,
vq_embed_dim: Optional[int] = None,
):
super().__init__()
# pass init params to Encoder
self.encoder = Encoder(
in_channels=in_channels,
out_channels=latent_channels,
down_block_types=down_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
double_z=False,
)
vq_embed_dim = vq_embed_dim if vq_embed_dim is not None else latent_channels
self.quant_conv = nn.Conv2D(latent_channels, vq_embed_dim, 1)
self.quantize = VectorQuantizer(num_vq_embeddings, vq_embed_dim, beta=0.25, remap=None, sane_index_shape=False)
self.post_quant_conv = nn.Conv2D(vq_embed_dim, latent_channels, 1)
# pass init params to Decoder
self.decoder = Decoder(
in_channels=latent_channels,
out_channels=out_channels,
up_block_types=up_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
)
def encode(self, x: paddle.Tensor, return_dict: bool = True):
h = self.encoder(x)
h = self.quant_conv(h)
if not return_dict:
return (h,)
return VQEncoderOutput(latents=h)
def decode(self, h: paddle.Tensor, force_not_quantize: bool = False, return_dict: bool = True):
# also go through quantization layer
if not force_not_quantize:
quant, emb_loss, info = self.quantize(h)
else:
quant = h
quant = self.post_quant_conv(quant)
dec = self.decoder(quant)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def forward(self, sample: paddle.Tensor, return_dict: bool = True):
r"""
Args:
sample (`paddle.Tensor`): Input sample.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
"""
x = sample
h = self.encode(x).latents
dec = self.decode(h).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
class AutoencoderKL(ModelMixin, ConfigMixin):
r"""Variational Autoencoder (VAE) model with KL loss from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma
and Max Welling.
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
implements for all the model (such as downloading or saving, etc.)
Parameters:
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to :
obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types.
down_block_out_channels (`Tuple[int]`, *optional*, defaults to :
None: Tuple of down block output channels.
up_block_types (`Tuple[str]`, *optional*, defaults to :
obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types.
up_block_out_channels (`Tuple[int]`, *optional*, defaults to :
None: Tuple of up block output channels.
block_out_channels (`Tuple[int]`, *optional*, defaults to :
obj:`(64,)`): Tuple of block output channels.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
latent_channels (`int`, *optional*, defaults to `4`): Number of channels in the latent space.
sample_size (`int`, *optional*, defaults to `32`): TODO
"""
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
down_block_out_channels: Tuple[int] = None,
up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
up_block_out_channels: Tuple[int] = None,
block_out_channels: Tuple[int] = (64,),
layers_per_block: int = 1,
act_fn: str = "silu",
latent_channels: int = 4,
norm_num_groups: int = 32,
sample_size: int = 32,
):
super().__init__()
# pass init params to Encoder
self.encoder = Encoder(
in_channels=in_channels,
out_channels=latent_channels,
down_block_types=down_block_types,
block_out_channels=down_block_out_channels
if down_block_out_channels
is not None # if down_block_out_channels not givien, we will use block_out_channels
else block_out_channels,
layers_per_block=layers_per_block,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
double_z=True,
)
# pass init params to Decoder
self.decoder = Decoder(
in_channels=latent_channels,
out_channels=out_channels,
up_block_types=up_block_types,
block_out_channels=up_block_out_channels # if up_block_out_channels not givien, we will use block_out_channels
if up_block_out_channels is not None
else block_out_channels,
layers_per_block=layers_per_block,
norm_num_groups=norm_num_groups,
act_fn=act_fn,
)
self.quant_conv = nn.Conv2D(2 * latent_channels, 2 * latent_channels, 1)
self.post_quant_conv = nn.Conv2D(latent_channels, latent_channels, 1)
def encode(self, x: paddle.Tensor, return_dict: bool = True):
h = self.encoder(x)
moments = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
# (TODO junnyu) support vae slice
# https://github.com/huggingface/diffusers/commit/c28d3c82ce6f56c4b373a8260c56357d13db900a#diff-64804f08bc5e7a09947fb4eced462f15965acfa2d797354d85033e788f23b443
def decode(self, z: paddle.Tensor, return_dict: bool = True):
z = self.post_quant_conv(z)
dec = self.decoder(z)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def forward(
self,
sample: paddle.Tensor,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
) -> Union[DecoderOutput, paddle.Tensor]:
r"""
Args:
sample (`paddle.Tensor`): Input sample.
sample_posterior (`bool`, *optional*, defaults to `False`):
Whether to sample from the posterior.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
"""
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)