|
import gradio as gr |
|
import cv2 |
|
import tempfile |
|
from ultralytics import YOLOv10 |
|
import pandas as pd |
|
from gradio import processing_utils |
|
|
|
df = pd.read_csv('image_class.csv') |
|
df = df[['name', 'class']] |
|
df.drop_duplicates(inplace=True) |
|
print(len(df)) |
|
df1 = pd.read_csv('image_class.csv') |
|
df1 = df1[['name', 'class', 'im_file']] |
|
df1['file_name'] = df1['im_file'].apply(lambda v: v.split('_')[-1].split('.')[0]) |
|
df1.drop(columns='im_file', inplace=True) |
|
df1.drop_duplicates(inplace=True) |
|
print(df1) |
|
print(len(df1)) |
|
|
|
def yolov10_inference(image, video, image_size, conf_threshold, iou_threshold): |
|
model = YOLOv10('./drug_yolov10.pt') |
|
|
|
if image: |
|
results = model.predict(source=image, imgsz=image_size, conf=conf_threshold, iou=iou_threshold) |
|
annotated_image = results[0].plot() |
|
|
|
box = results[0].boxes |
|
cls = [int(c) for c in box.cls.tolist()] |
|
cnf = [round(f,2) for f in box.conf.tolist()] |
|
clcf = '\n'.join([f'Class:{cls[i]} , Confidence:{cnf[i]*100}%' for i in range(len(cls))]) |
|
name = '\n'.join([df[df['class']==n]['name'].item() for n in cls]) |
|
file_name = image.split('_')[-1].split('.')[0] |
|
print(f'file name: {file_name}') |
|
try: |
|
drug_name = df1[df1['file_name']==file_name]['name'].item() |
|
drug_class = df1[df1['file_name']==file_name]['class'].item() |
|
drug_name = f'{drug_class}, {drug_name}' |
|
print(drug_name) |
|
except: |
|
drug_name = 'No have data' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return annotated_image[:, :, ::-1], None, clcf, name, file_name, drug_name |
|
else: |
|
video_path = tempfile.mktemp(suffix=".webm") |
|
with open(video_path, "wb") as f: |
|
with open(video, "rb") as g: |
|
f.write(g.read()) |
|
|
|
cap = cv2.VideoCapture(video_path) |
|
fps = cap.get(cv2.CAP_PROP_FPS) |
|
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
|
|
output_video_path = tempfile.mktemp(suffix=".webm") |
|
out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'vp80'), fps, (frame_width, frame_height)) |
|
|
|
while cap.isOpened(): |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
|
|
results = model.predict(source=frame, imgsz=image_size, conf=conf_threshold, iou=iou_threshold) |
|
annotated_frame = results[0].plot() |
|
out.write(annotated_frame) |
|
|
|
cap.release() |
|
out.release() |
|
|
|
return None, output_video_path |
|
|
|
|
|
def yolov10_inference_for_examples(image, image_size, conf_threshold, iou_threshold): |
|
annotated_image, _, output_class, output_name = yolov10_inference(image, None, image_size, conf_threshold, iou_threshold) |
|
return annotated_image |
|
|
|
def app(): |
|
with gr.Blocks(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
|
|
image = gr.Image(type="filepath", label="Image", visible=True) |
|
video = gr.Video(label="Video", visible=False) |
|
input_type = gr.Radio( |
|
choices=["Image", "Video"], |
|
value="Image", |
|
label="Input Type", |
|
) |
|
file_name = gr.Textbox(label='File Name') |
|
file_name.change(outputs=file_name) |
|
drug_name = gr.Textbox(label='Drug Name') |
|
drug_name.change(outputs=drug_name) |
|
|
|
image_size = gr.Slider( |
|
label="Image Size", |
|
minimum=0, |
|
maximum=1280, |
|
step=10, |
|
value=640, |
|
) |
|
conf_threshold = gr.Slider( |
|
label="Confidence Threshold", |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.05, |
|
value=0.25, |
|
) |
|
iou_threshold = gr.Slider( |
|
label="IOU Threshold", |
|
minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.6, |
|
) |
|
yolov10_infer = gr.Button(value="Detect Objects") |
|
|
|
with gr.Column(): |
|
output_image = gr.Image(type="numpy", label="Annotated Image", visible=True) |
|
output_video = gr.Video(label="Annotated Video", visible=False) |
|
output_name = gr.Textbox(label='Predicted Drug Name') |
|
output_name.change(outputs=output_name) |
|
output_class = gr.Textbox(label='Predicted Class') |
|
output_class.change(outputs=output_class) |
|
|
|
def update_visibility(input_type): |
|
image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False) |
|
video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True) |
|
output_image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False) |
|
output_video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True) |
|
print(f'updated image: {image}') |
|
|
|
return image, video, output_image, output_video |
|
|
|
input_type.change( |
|
fn=update_visibility, |
|
inputs=[input_type], |
|
outputs=[image, video, output_image, output_video], |
|
) |
|
|
|
def run_inference(image, video, image_size, conf_threshold, iou_threshold, input_type): |
|
if input_type == "Image": |
|
return yolov10_inference(image, None, image_size, conf_threshold, iou_threshold) |
|
else: |
|
return yolov10_inference(None, video, image_size, conf_threshold, iou_threshold) |
|
|
|
|
|
yolov10_infer.click( |
|
fn=run_inference, |
|
inputs=[image, video, image_size, conf_threshold, iou_threshold, input_type], |
|
outputs=[output_image, output_video, output_class, output_name, file_name, drug_name], |
|
) |
|
|
|
gr.Examples( |
|
examples = [ |
|
['./RXBASE-600_00071-1014-68_NLMIMAGE10_5715ABFD.jpg', 280, 0.2, 0.6], |
|
['./RXNAV-600_13668-0095-90_RXNAVIMAGE10_D145E8EF.jpg', 640, 0.2, 0.7], |
|
['./RXBASE-600_00074-7126-13_NLMIMAGE10_C003606B.jpg', 640, 0.2, 0.8], |
|
], |
|
fn=yolov10_inference_for_examples, |
|
inputs=[ |
|
image, |
|
image_size, |
|
conf_threshold, |
|
iou_threshold, |
|
], |
|
outputs=[output_image], |
|
cache_examples='lazy', |
|
) |
|
|
|
gradio_app = gr.Blocks() |
|
with gradio_app: |
|
gr.HTML( |
|
""" |
|
<h1 style='text-align: center'> |
|
YOLOv10: Real-Time End-to-End Object Detection |
|
</h1> |
|
""") |
|
gr.HTML( |
|
""" |
|
<h3 style='text-align: center'> |
|
<a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a> |
|
</h3> |
|
""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
app() |
|
if __name__ == '__main__': |
|
gradio_app.launch() |
|
|