Spaces:
Runtime error
Runtime error
Text location in screenshots (#12)
Browse files- Add screenshot text location feature (090950138af99f7877d5f7a6565213c0be493da2)
- Screenshot text location: pad images (35feaa002ab2d0ef4b3c1820b559d85ecb277fa3)
Co-authored-by: Pedro Cuenca <pcuenq@users.noreply.huggingface.co>
- app.py +115 -14
- assets/localization_example_1.jpeg +0 -0
app.py
CHANGED
|
@@ -1,9 +1,8 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import torch
|
| 3 |
-
from transformers import FuyuForCausalLM, AutoTokenizer
|
| 4 |
-
from transformers.models.fuyu.processing_fuyu import FuyuProcessor
|
| 5 |
-
from transformers.models.fuyu.image_processing_fuyu import FuyuImageProcessor
|
| 6 |
from PIL import Image
|
|
|
|
| 7 |
|
| 8 |
model_id = "adept/fuyu-8b"
|
| 9 |
dtype = torch.bfloat16
|
|
@@ -13,9 +12,10 @@ tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
| 13 |
model = FuyuForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=dtype)
|
| 14 |
processor = FuyuProcessor(image_processor=FuyuImageProcessor(), tokenizer=tokenizer)
|
| 15 |
|
| 16 |
-
|
|
|
|
| 17 |
|
| 18 |
-
def resize_to_max(image, max_width=
|
| 19 |
width, height = image.size
|
| 20 |
if width <= max_width and height <= max_height:
|
| 21 |
return image
|
|
@@ -26,23 +26,101 @@ def resize_to_max(image, max_width=1080, max_height=1080):
|
|
| 26 |
|
| 27 |
return image.resize((width, height), Image.LANCZOS)
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
def predict(image, prompt):
|
| 30 |
# image = image.convert('RGB')
|
| 31 |
-
image = resize_to_max(image)
|
| 32 |
-
|
| 33 |
model_inputs = processor(text=prompt, images=[image])
|
| 34 |
model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()}
|
| 35 |
|
| 36 |
-
generation_output = model.generate(**model_inputs, max_new_tokens=
|
| 37 |
prompt_len = model_inputs["input_ids"].shape[-1]
|
| 38 |
return tokenizer.decode(generation_output[0][prompt_len:], skip_special_tokens=True)
|
| 39 |
|
| 40 |
-
def caption(image):
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
def set_example_image(example: list) -> dict:
|
| 44 |
return gr.Image.update(value=example[0])
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
|
| 48 |
css = """
|
|
@@ -88,21 +166,44 @@ with gr.Blocks(css=css) as demo:
|
|
| 88 |
|
| 89 |
with gr.Tab("Image Captioning"):
|
| 90 |
with gr.Row():
|
| 91 |
-
|
|
|
|
|
|
|
| 92 |
captioning_output = gr.Textbox(label="Output")
|
| 93 |
captioning_btn = gr.Button("Generate Caption")
|
| 94 |
|
| 95 |
gr.Examples(
|
| 96 |
-
[["assets/captioning_example_1.png"], ["assets/captioning_example_2.png"]],
|
| 97 |
-
inputs = [captioning_input],
|
| 98 |
outputs = [captioning_output],
|
| 99 |
fn=caption,
|
| 100 |
cache_examples=True,
|
| 101 |
label='Click on any Examples below to get captioning results quickly 👇'
|
| 102 |
)
|
| 103 |
|
| 104 |
-
captioning_btn.click(fn=caption, inputs=captioning_input, outputs=captioning_output)
|
| 105 |
vqa_btn.click(fn=predict, inputs=[image_input, text_input], outputs=vqa_output)
|
| 106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
demo.launch(server_name="0.0.0.0")
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import re
|
| 3 |
import torch
|
|
|
|
|
|
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
+
from transformers import AutoTokenizer, FuyuForCausalLM, FuyuImageProcessor, FuyuProcessor
|
| 6 |
|
| 7 |
model_id = "adept/fuyu-8b"
|
| 8 |
dtype = torch.bfloat16
|
|
|
|
| 12 |
model = FuyuForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=dtype)
|
| 13 |
processor = FuyuProcessor(image_processor=FuyuImageProcessor(), tokenizer=tokenizer)
|
| 14 |
|
| 15 |
+
CAPTION_PROMPT = "Generate a coco-style caption.\n"
|
| 16 |
+
DETAILED_CAPTION_PROMPT = "What is happening in this image?"
|
| 17 |
|
| 18 |
+
def resize_to_max(image, max_width=1920, max_height=1080):
|
| 19 |
width, height = image.size
|
| 20 |
if width <= max_width and height <= max_height:
|
| 21 |
return image
|
|
|
|
| 26 |
|
| 27 |
return image.resize((width, height), Image.LANCZOS)
|
| 28 |
|
| 29 |
+
def pad_to_size(image, canvas_width=1920, canvas_height=1080):
|
| 30 |
+
width, height = image.size
|
| 31 |
+
if width >= canvas_width and height >= canvas_height:
|
| 32 |
+
return image
|
| 33 |
+
|
| 34 |
+
# Paste at (0, 0)
|
| 35 |
+
canvas = Image.new("RGB", (canvas_width, canvas_height))
|
| 36 |
+
canvas.paste(image)
|
| 37 |
+
return canvas
|
| 38 |
+
|
| 39 |
def predict(image, prompt):
|
| 40 |
# image = image.convert('RGB')
|
|
|
|
|
|
|
| 41 |
model_inputs = processor(text=prompt, images=[image])
|
| 42 |
model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()}
|
| 43 |
|
| 44 |
+
generation_output = model.generate(**model_inputs, max_new_tokens=50)
|
| 45 |
prompt_len = model_inputs["input_ids"].shape[-1]
|
| 46 |
return tokenizer.decode(generation_output[0][prompt_len:], skip_special_tokens=True)
|
| 47 |
|
| 48 |
+
def caption(image, detailed_captioning):
|
| 49 |
+
if detailed_captioning:
|
| 50 |
+
caption_prompt = DETAILED_CAPTION_PROMPT
|
| 51 |
+
else:
|
| 52 |
+
caption_prompt = CAPTION_PROMPT
|
| 53 |
+
return predict(image, caption_prompt).lstrip()
|
| 54 |
|
| 55 |
def set_example_image(example: list) -> dict:
|
| 56 |
return gr.Image.update(value=example[0])
|
| 57 |
|
| 58 |
+
def scale_factor_to_fit(original_size, target_size=(1920, 1080)):
|
| 59 |
+
width, height = original_size
|
| 60 |
+
max_width, max_height = target_size
|
| 61 |
+
if width <= max_width and height <= max_height:
|
| 62 |
+
return 1.0
|
| 63 |
+
return min(max_width/width, max_height/height)
|
| 64 |
+
|
| 65 |
+
def tokens_to_box(tokens, original_size):
|
| 66 |
+
bbox_start = tokenizer.convert_tokens_to_ids("<0x00>")
|
| 67 |
+
bbox_end = tokenizer.convert_tokens_to_ids("<0x01>")
|
| 68 |
+
try:
|
| 69 |
+
# Assumes a single box
|
| 70 |
+
bbox_start_pos = (tokens == bbox_start).nonzero(as_tuple=True)[0].item()
|
| 71 |
+
bbox_end_pos = (tokens == bbox_end).nonzero(as_tuple=True)[0].item()
|
| 72 |
+
|
| 73 |
+
if bbox_end_pos != bbox_start_pos + 5:
|
| 74 |
+
return tokens
|
| 75 |
+
|
| 76 |
+
# Retrieve transformed coordinates from tokens
|
| 77 |
+
coords = tokenizer.convert_ids_to_tokens(tokens[bbox_start_pos+1:bbox_end_pos])
|
| 78 |
+
|
| 79 |
+
# Scale back to original image size and multiply by 2
|
| 80 |
+
scale = scale_factor_to_fit(original_size)
|
| 81 |
+
top, left, bottom, right = [2 * int(float(c)/scale) for c in coords]
|
| 82 |
+
|
| 83 |
+
# Replace the IDs so they get detokenized right
|
| 84 |
+
replacement = f" <box>{top}, {left}, {bottom}, {right}</box>"
|
| 85 |
+
replacement = tokenizer.tokenize(replacement)[1:]
|
| 86 |
+
replacement = tokenizer.convert_tokens_to_ids(replacement)
|
| 87 |
+
replacement = torch.tensor(replacement).to(tokens)
|
| 88 |
+
|
| 89 |
+
tokens = torch.cat([tokens[:bbox_start_pos], replacement, tokens[bbox_end_pos+1:]], 0)
|
| 90 |
+
return tokens
|
| 91 |
+
except:
|
| 92 |
+
gr.Error("Can't convert tokens.")
|
| 93 |
+
return tokens
|
| 94 |
+
|
| 95 |
+
def coords_from_response(response):
|
| 96 |
+
# y1, x1, y2, x2
|
| 97 |
+
pattern = r"<box>(\d+),\s*(\d+),\s*(\d+),\s*(\d+)</box>"
|
| 98 |
+
|
| 99 |
+
match = re.search(pattern, response)
|
| 100 |
+
if match:
|
| 101 |
+
# Unpack and change order
|
| 102 |
+
y1, x1, y2, x2 = [int(coord) for coord in match.groups()]
|
| 103 |
+
return (x1, y1, x2, y2)
|
| 104 |
+
else:
|
| 105 |
+
gr.Error("The string is malformed or does not match the expected pattern.")
|
| 106 |
+
|
| 107 |
+
def localize(image, query):
|
| 108 |
+
prompt = f"When presented with a box, perform OCR to extract text contained within it. If provided with text, generate the corresponding bounding box.\n{query}"
|
| 109 |
+
|
| 110 |
+
# Downscale and/or pad to 1920x1080
|
| 111 |
+
padded = resize_to_max(image)
|
| 112 |
+
padded = pad_to_size(padded)
|
| 113 |
+
|
| 114 |
+
model_inputs = processor(text=prompt, images=[padded])
|
| 115 |
+
model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()}
|
| 116 |
+
|
| 117 |
+
generation_output = model.generate(**model_inputs, max_new_tokens=40)
|
| 118 |
+
prompt_len = model_inputs["input_ids"].shape[-1]
|
| 119 |
+
tokens = generation_output[0][prompt_len:]
|
| 120 |
+
tokens = tokens_to_box(tokens, image.size)
|
| 121 |
+
decoded = tokenizer.decode(tokens, skip_special_tokens=True)
|
| 122 |
+
coords = coords_from_response(decoded)
|
| 123 |
+
return image, [(coords, f"Location of \"{query}\"")]
|
| 124 |
|
| 125 |
|
| 126 |
css = """
|
|
|
|
| 166 |
|
| 167 |
with gr.Tab("Image Captioning"):
|
| 168 |
with gr.Row():
|
| 169 |
+
with gr.Column():
|
| 170 |
+
captioning_input = gr.Image(label="Upload your Image", type="pil")
|
| 171 |
+
detailed_captioning_checkbox = gr.Checkbox(label="Enable detailed captioning")
|
| 172 |
captioning_output = gr.Textbox(label="Output")
|
| 173 |
captioning_btn = gr.Button("Generate Caption")
|
| 174 |
|
| 175 |
gr.Examples(
|
| 176 |
+
[["assets/captioning_example_1.png", False], ["assets/captioning_example_2.png", True]],
|
| 177 |
+
inputs = [captioning_input, detailed_captioning_checkbox],
|
| 178 |
outputs = [captioning_output],
|
| 179 |
fn=caption,
|
| 180 |
cache_examples=True,
|
| 181 |
label='Click on any Examples below to get captioning results quickly 👇'
|
| 182 |
)
|
| 183 |
|
| 184 |
+
captioning_btn.click(fn=caption, inputs=[captioning_input, detailed_captioning_checkbox], outputs=captioning_output)
|
| 185 |
vqa_btn.click(fn=predict, inputs=[image_input, text_input], outputs=vqa_output)
|
| 186 |
|
| 187 |
+
with gr.Tab("Find Text in Screenshots"):
|
| 188 |
+
with gr.Row():
|
| 189 |
+
with gr.Column():
|
| 190 |
+
localization_input = gr.Image(label="Upload your Image", type="pil")
|
| 191 |
+
query_input = gr.Textbox(label="Text to find")
|
| 192 |
+
localization_btn = gr.Button("Locate Text")
|
| 193 |
+
with gr.Column():
|
| 194 |
+
with gr.Row(height=800):
|
| 195 |
+
localization_output = gr.AnnotatedImage(label="Text Position")
|
| 196 |
+
|
| 197 |
+
gr.Examples(
|
| 198 |
+
[["assets/localization_example_1.jpeg", "Share your repair"],
|
| 199 |
+
["assets/screen2words_ui_example.png", "statistics"]],
|
| 200 |
+
inputs = [localization_input, query_input],
|
| 201 |
+
outputs = [localization_output],
|
| 202 |
+
fn=localize,
|
| 203 |
+
cache_examples=True,
|
| 204 |
+
label='Click on any Examples below to get localization results quickly 👇'
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
localization_btn.click(fn=localize, inputs=[localization_input, query_input], outputs=localization_output)
|
| 208 |
|
| 209 |
demo.launch(server_name="0.0.0.0")
|
assets/localization_example_1.jpeg
ADDED
|