|
from app.tapex import execute_query |
|
import gradio as gr |
|
|
|
|
|
def main(): |
|
description = "Querying a csv using TAPEX model. You can ask a question about tabular data. TAPAS model " \ |
|
"will produce the result. Finetuned TAPEX model runs on max 5000 rows and 20 columns data. " \ |
|
"A sample data of shopify store sales is provided" |
|
|
|
article = "<p style='text-align: center'><a href='https://unscrambl.com/' target='_blank'>Unscrambl</a> | <a href='https://huggingface.co/google/tapas-base-finetuned-wtq' target='_blank'>TAPAS Model</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=abaranovskij_tablequery' alt='visitor badge'></center>" |
|
|
|
iface = gr.Interface(fn=execute_query, |
|
inputs=[gr.Textbox(label="Search query"), |
|
gr.File(label="CSV file")], |
|
outputs=[gr.JSON(label="Result"), |
|
gr.Dataframe(label="All data")], |
|
examples=[ |
|
["What is the highest order_amount?", "shopify.csv"], |
|
["Which user_id has the highest order_amount?", "shopify.csv"], |
|
["Which payment method was used the most?", "shopify.csv"] |
|
], |
|
title="Table Question Answering (TAPEX)", |
|
description=description, |
|
article=article, |
|
allow_flagging='never') |
|
|
|
|
|
iface.launch(enable_queue=True) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |