maskgenarator / app.py
123LETSPLAY's picture
Create app.py
e1cc11d verified
import torch
from PIL import Image
import gradio as gr
from sam2.sam2_image_predictor import SAM2ImagePredictor
# Load the SAM2 model
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large")
# Function to predict masks from the image and prompts
def generate_mask(image, prompt):
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
predictor.set_image(image)
masks, _, _ = predictor.predict(prompt)
return masks[0] # Returning the first mask for simplicity
# Set up the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Image Segmentation using SAM2")
# Input: Upload an image
image_input = gr.Image(label="Upload Image", type="pil")
# Input: Text prompt for image segmentation
prompt_input = gr.Textbox(label="Enter segmentation prompt", placeholder="Describe what you want to segment")
# Output: Display the mask generated by the SAM2 model
output_mask = gr.Image(label="Generated Mask")
# Button to trigger mask generation
generate_button = gr.Button("Generate Mask")
# Link button click with the segmentation function
generate_button.click(fn=generate_mask, inputs=[image_input, prompt_input], outputs=output_mask)
# Launch the Gradio app
demo.launch()