|
import g4f |
|
import gradio as gr |
|
from g4f.Provider import ( |
|
Ails, |
|
You, |
|
Bing, |
|
Yqcloud, |
|
Theb, |
|
Aichat, |
|
Bard, |
|
Vercel, |
|
Forefront, |
|
Lockchat, |
|
Liaobots, |
|
H2o, |
|
ChatgptLogin, |
|
DeepAi, |
|
GetGpt |
|
) |
|
import os |
|
import json |
|
import pandas as pd |
|
|
|
from models_for_langchain.model import CustomLLM |
|
from langchain.memory import ConversationBufferWindowMemory, ConversationTokenBufferMemory |
|
from langchain import LLMChain, PromptTemplate |
|
from langchain.prompts import ( |
|
ChatPromptTemplate, |
|
PromptTemplate, |
|
SystemMessagePromptTemplate, |
|
AIMessagePromptTemplate, |
|
HumanMessagePromptTemplate, |
|
) |
|
|
|
provider_dict = { |
|
'Ails': Ails, |
|
'You': You, |
|
'Bing': Bing, |
|
'Yqcloud': Yqcloud, |
|
'Theb': Theb, |
|
'Aichat': Aichat, |
|
'Bard': Bard, |
|
'Vercel': Vercel, |
|
'Forefront': Forefront, |
|
'Lockchat': Lockchat, |
|
'Liaobots': Liaobots, |
|
'H2o': H2o, |
|
'ChatgptLogin': ChatgptLogin, |
|
'DeepAi': DeepAi, |
|
'GetGpt': GetGpt |
|
} |
|
|
|
prompt_set_list = {} |
|
for prompt_file in os.listdir("prompt_set"): |
|
key = prompt_file |
|
if '.csv' in key: |
|
df = pd.read_csv("prompt_set/" + prompt_file) |
|
prompt_dict = dict(zip(df['act'], df['prompt'])) |
|
else: |
|
with open("prompt_set/" + prompt_file, encoding='utf-8') as f: |
|
ds = json.load(f) |
|
prompt_dict = {item["act"]: item["prompt"] for item in ds} |
|
prompt_set_list[key] = prompt_dict |
|
|
|
with gr.Blocks() as demo: |
|
llm = CustomLLM() |
|
|
|
template = """ |
|
Chat with human based on following instructions: |
|
``` |
|
{system_instruction} |
|
``` |
|
The following is a conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. |
|
{{chat_history}} |
|
Human: {{human_input}} |
|
Chatbot:""" |
|
|
|
memory = ConversationBufferWindowMemory(k=10, memory_key="chat_history") |
|
|
|
chatbot = gr.Chatbot([], label='AI') |
|
msg = gr.Textbox(value="", label='请输入:') |
|
with gr.Row(): |
|
clear = gr.Button("清空对话", scale=2) |
|
chat_mode = gr.Checkbox(value=True, label='聊天模式', interactive=True, scale=1) |
|
system_msg = gr.Textbox(value="你是一名助手,可以解答问题。", label='系统提示') |
|
with gr.Row(): |
|
default_prompt_set = "1 中文提示词.json" |
|
prompt_set_name = gr.Dropdown(prompt_set_list.keys(), value=default_prompt_set, label='提示词集合') |
|
prompt_name = gr.Dropdown(prompt_set_list[default_prompt_set].keys(), label='提示词', min_width=20) |
|
with gr.Row(): |
|
model_name = gr.Dropdown(['gpt-3.5-turbo', 'gpt-4'], value='gpt-3.5-turbo', label='模型') |
|
provider_name = gr.Dropdown(provider_dict.keys(), value='GetGpt', label='提供者', min_width=20) |
|
|
|
def change_prompt_set(prompt_set_name): |
|
return gr.Dropdown.update(choices=list(prompt_set_list[prompt_set_name].keys())) |
|
|
|
def change_prompt(prompt_set_name, prompt_name): |
|
return gr.update(value=prompt_set_list[prompt_set_name][prompt_name]) |
|
|
|
def user(user_message, history = []): |
|
return gr.update(value="", interactive=False), history + [[user_message, None]] |
|
|
|
def bot(history, model_name, provider_name, system_msg, chat_mode): |
|
history[-1][1] = '' |
|
if len(system_msg)>3000: |
|
system_msg = system_msg[:2000] + system_msg[-1000:] |
|
|
|
if not chat_mode: |
|
global template, memory |
|
llm.model_name = model_name |
|
llm.provider_name = provider_name |
|
prompt = PromptTemplate( |
|
input_variables=["chat_history", "human_input"], template=template.format(system_instruction=system_msg) |
|
) |
|
llm_chain = LLMChain( |
|
llm=llm, |
|
prompt=prompt, |
|
verbose=False, |
|
memory=memory, |
|
) |
|
bot_msg = llm_chain.run(history[-1][0]) |
|
for c in bot_msg: |
|
history[-1][1] += c |
|
yield history |
|
else: |
|
prompt = """ |
|
请你仔细阅读以下提示,然后针对用户的话进行回答。 |
|
提示: |
|
``` |
|
{} |
|
``` |
|
用户最新的话: |
|
``` |
|
{} |
|
``` |
|
请回答: |
|
""" |
|
|
|
|
|
messages = [] |
|
for user_message, assistant_message in history[:-1]: |
|
messages.append({"role": "user", "content": user_message}) |
|
messages.append({"role": "assistant", "content": assistant_message}) |
|
messages.append({"role": "user", "content": history[-1][0]}) |
|
|
|
|
|
bot_msg = g4f.ChatCompletion.create( |
|
model=model_name, |
|
provider=provider_dict[provider_name], |
|
messages=messages, |
|
stream=True) |
|
for c in bot_msg: |
|
history[-1][1] += c |
|
print(c, flush=True, end='') |
|
yield history |
|
|
|
def empty_chat(): |
|
global memory |
|
memory = ConversationBufferWindowMemory(k=10, memory_key="chat_history") |
|
return None |
|
response = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( |
|
bot, [chatbot, model_name, provider_name, system_msg, chat_mode], chatbot |
|
) |
|
prompt_set_name.select(change_prompt_set, prompt_set_name, prompt_name) |
|
prompt_name.select(change_prompt, [prompt_set_name, prompt_name], system_msg) |
|
|
|
response.then(lambda: gr.update(interactive=True), None, [msg], queue=False) |
|
clear.click(empty_chat, None, [chatbot], queue=False) |
|
|
|
demo.title = "AI Chat" |
|
demo.queue() |
|
demo.launch() |