Priyanka-Chopra-TTS / synthesize.py
0xrushi's picture
Update synthesize.py
dc95656
import argparse
import os
import matplotlib.pyplot as plt
import torch
import numpy as np
import matplotlib
from scipy.io.wavfile import write
from os.path import dirname, abspath
import sys
import nltk
nltk.download("punkt")
sys.path.append(dirname(dirname(abspath(__file__))))
matplotlib.use("Agg")
from training.tacotron2_model import Tacotron2
from training.clean_text import clean_text
from training import DEFAULT_ALPHABET
from synthesis.vocoders import Hifigan
def load_model(model_path):
"""
Loads the Tacotron2 model.
Uses GPU if available, otherwise uses CPU.
Parameters
----------
model_path : str
Path to tacotron2 model
Returns
-------
Tacotron2
Loaded tacotron2 model
"""
if torch.cuda.is_available():
model = Tacotron2().cuda()
model.load_state_dict(torch.load(model_path)["state_dict"])
_ = model.cuda().eval().half()
else:
model = Tacotron2()
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))["state_dict"])
return model
def generate_graph(alignments, filepath, heading=""):
"""
Generates synthesis alignment graph image.
Parameters
----------
alignments : list
Numpy alignment data
filepath : str
Path to save image to
heading : str (optional)
Graph heading
"""
data = alignments.float().data.cpu().numpy()[0].T
plt.imshow(data, aspect="auto", origin="lower", interpolation="none")
if heading:
plt.title(heading)
plt.savefig(filepath)
def text_to_sequence(text, symbols):
"""
Generates text sequence for audio file
Parameters
----------
text : str
Text to synthesize
symbols : list
List of valid symbols
"""
symbol_to_id = {s: i for i, s in enumerate(symbols)}
sequence = np.array([[symbol_to_id[s] for s in text if s in symbol_to_id]])
if torch.cuda.is_available():
return torch.autograd.Variable(torch.from_numpy(sequence)).cuda().long()
else:
return torch.autograd.Variable(torch.from_numpy(sequence)).cpu().long()
def join_alignment_graphs(alignments):
"""
Joins multiple alignment graphs.
Parameters
----------
alignments : list
List of alignment Tensors
Returns
-------
Tensor
Combined alignment tensor
"""
alignment_sizes = [a.size() for a in alignments]
joined = torch.zeros((1, sum([a[1] for a in alignment_sizes]), sum([a[2] for a in alignment_sizes])))
current_x = 0
current_y = 0
for alignment in alignments:
joined[:, current_x : current_x + alignment.size()[1], current_y : current_y + alignment.size()[2]] = alignment
current_x += alignment.size()[1]
current_y += alignment.size()[2]
return joined
def synthesize(
model,
text,
symbols=DEFAULT_ALPHABET,
graph_path=None,
audio_path=None,
vocoder=None,
silence_padding=0.15,
sample_rate=22050,
max_decoder_steps=1000,
split_text=False,
):
"""
Synthesise text for a given model.
Produces graph and/or audio file when given.
Supports multi line synthesis (seperated by \n).
Parameters
----------
model : Tacotron2
Tacotron2 model
text : str/list
Text to synthesize (or list of lines to synthesize)
symbols : list
List of symbols (default is English)
graph_path : str (optional)
Path to save alignment graph to
audio_path : str (optional)
Path to save audio file to
vocoder : Object (optional)
Vocoder model (required if generating audio)
silence_padding : float (optional)
Seconds of silence to seperate each clip by with multi-line synthesis (default is 0.15)
sample_rate : int (optional)
Audio sample rate (default is 22050)
max_decoder_steps : int (optional)
Max decoder steps controls sequence length and memory usage during inference.
Increasing this will use more memory but may allow for longer sentences. (default is 1000)
split_text : bool (optional)
Whether to use the split text tool to convert a block of text into multiple shorter sentences
to synthesize (default is True)
Raises
-------
AssertionError
If audio_path is given without a vocoder
"""
if audio_path:
assert vocoder, "Missing vocoder"
if not isinstance(text, list) and split_text:
# Split text into multiple lines
text = nltk.tokenize.sent_tokenize(text)
if isinstance(text, list):
# Multi-lines given
text = [line.strip() for line in text if line.strip()]
mels = []
alignments = []
for line in text:
text = clean_text(line, symbols)
sequence = text_to_sequence(text, symbols)
_, mel_outputs_postnet, _, alignment = model.inference(sequence, max_decoder_steps)
mels.append(mel_outputs_postnet)
alignments.append(alignment)
if graph_path:
generate_graph(join_alignment_graphs(alignments), graph_path)
if audio_path:
silence = np.zeros(int(silence_padding * sample_rate)).astype("int16")
audio_segments = []
for i in range(len(mels)):
audio_segments.append(vocoder.generate_audio(mels[i]))
if i != len(mels) - 1:
audio_segments.append(silence)
audio = np.concatenate(audio_segments)
write(audio_path, sample_rate, audio)
else:
# Single sentence
text = clean_text(text.strip(), symbols)
sequence = text_to_sequence(text, symbols)
_, mel_outputs_postnet, _, alignment = model.inference(sequence, max_decoder_steps)
if graph_path:
generate_graph(alignment, graph_path)
if audio_path:
audio = vocoder.generate_audio(mel_outputs_postnet)
write(audio_path, sample_rate, audio)