Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from transformers import BlipProcessor, BlipForConditionalGeneration | |
from PIL import Image | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to(device) | |
def generate_caption(image): | |
# Now directly using the PIL Image object | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = model.generate(**inputs) | |
caption = processor.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
return caption | |
def caption_image(image): | |
""" | |
Takes a PIL Image input and returns a caption. | |
""" | |
try: | |
caption = generate_caption(image) | |
return caption | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
iface = gr.Interface( | |
fn=caption_image, | |
inputs=gr.Image(type="pil"), | |
outputs="text", | |
title="Image Captioning with BLIP", | |
description="Upload an image to generate a caption." | |
) | |
iface.launch(share=True) |