Spaces:
Sleeping
Sleeping
Add lots of code
Browse files- README.md +3 -3
- app.py +133 -0
- requirements.txt +8 -0
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
-
title: Abstractive
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.23.0
|
|
|
1 |
---
|
2 |
+
title: Abstractive QA Demo
|
3 |
+
emoji: ❓
|
4 |
+
colorFrom: pink
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.23.0
|
app.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
import faiss
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
+
import requests
|
7 |
+
import torch
|
8 |
+
from bs4 import BeautifulSoup
|
9 |
+
from datasets import Dataset
|
10 |
+
from sentence_transformers import SentenceTransformer
|
11 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
12 |
+
|
13 |
+
# Load retriever model
|
14 |
+
torch.set_grad_enabled(False) # Disable gradients
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
retriever = SentenceTransformer("multi-qa-MiniLM-L6-cos-v1", device=device)
|
17 |
+
|
18 |
+
# Load generation model
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained("yjernite/bart_eli5")
|
20 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("yjernite/bart_eli5").to(device)
|
21 |
+
|
22 |
+
|
23 |
+
def scrape(urls: List[str]) -> Dataset:
|
24 |
+
data = []
|
25 |
+
chunk_size = 100
|
26 |
+
# Extract the text inside all the <p> tags for each search result
|
27 |
+
for url in urls:
|
28 |
+
# Send the request and get the response
|
29 |
+
response = requests.get(url)
|
30 |
+
|
31 |
+
# Parse the response HTML with BeautifulSoup
|
32 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
33 |
+
|
34 |
+
# Find all the <p> tags in the HTML and extract their text
|
35 |
+
for string in soup.stripped_strings:
|
36 |
+
text = repr(string).split()
|
37 |
+
contexts = [
|
38 |
+
" ".join(text[i : i + chunk_size])
|
39 |
+
for i in range(0, len(text), chunk_size)
|
40 |
+
]
|
41 |
+
for context in contexts:
|
42 |
+
if len(context.split()) >= 15:
|
43 |
+
data.append({"context": context, "url": url})
|
44 |
+
|
45 |
+
return Dataset.from_list(data)
|
46 |
+
|
47 |
+
|
48 |
+
def search_web(query: str) -> List[str]:
|
49 |
+
url = f"https://www.google.com/search?q={query}"
|
50 |
+
|
51 |
+
# Set the user agent to avoid being blocked by Google
|
52 |
+
headers = {
|
53 |
+
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36"
|
54 |
+
}
|
55 |
+
|
56 |
+
# Send the search request and get the response
|
57 |
+
response = requests.get(url, headers=headers)
|
58 |
+
|
59 |
+
# Parse the response HTML with BeautifulSoup
|
60 |
+
soup = BeautifulSoup(response.content, "html.parser")
|
61 |
+
|
62 |
+
# Find the search results in the HTML
|
63 |
+
search_results = soup.find_all("div", class_="g")
|
64 |
+
|
65 |
+
# Extract the title and URL of the top search results
|
66 |
+
urls = set()
|
67 |
+
for result in search_results[:10]:
|
68 |
+
url = result.find("a")["href"]
|
69 |
+
if url.startswith("http"):
|
70 |
+
urls.add(url)
|
71 |
+
|
72 |
+
return urls
|
73 |
+
|
74 |
+
|
75 |
+
def generate_answer(question_doc: str) -> str:
|
76 |
+
q_toks = tokenizer.batch_encode_plus(
|
77 |
+
[question_doc], max_length=1024, pad_to_max_length=True
|
78 |
+
)
|
79 |
+
q_ids, q_mask = (
|
80 |
+
torch.LongTensor(q_toks["input_ids"]).to(device),
|
81 |
+
torch.LongTensor(q_toks["attention_mask"]).to(device),
|
82 |
+
)
|
83 |
+
model_output = model.generate(
|
84 |
+
input_ids=q_ids,
|
85 |
+
attention_mask=q_mask,
|
86 |
+
min_new_tokens=32,
|
87 |
+
max_new_tokens=256,
|
88 |
+
no_repeat_ngram_size=3,
|
89 |
+
num_beams=2,
|
90 |
+
do_sample=True,
|
91 |
+
length_penalty=1.5,
|
92 |
+
)
|
93 |
+
answer = tokenizer.batch_decode(model_output, skip_special_tokens=True)[0]
|
94 |
+
return answer.strip()
|
95 |
+
|
96 |
+
|
97 |
+
def predict(question: str) -> str:
|
98 |
+
urls = search_web(question)
|
99 |
+
data = scrape(urls)
|
100 |
+
# Create vector embeddings and add Faiss index
|
101 |
+
data_with_embeds = data.map(
|
102 |
+
lambda batch: {"embeddings": retriever.encode(batch["context"])}, batched=True
|
103 |
+
)
|
104 |
+
data_with_embeds.add_faiss_index(
|
105 |
+
column="embeddings", metric_type=faiss.METRIC_INNER_PRODUCT
|
106 |
+
)
|
107 |
+
# Get the most relevant examples
|
108 |
+
scores, relevant_examples = data_with_embeds.get_nearest_examples(
|
109 |
+
"embeddings", retriever.encode([question]), k=20
|
110 |
+
)
|
111 |
+
doc = "<P> " + " <P> ".join(
|
112 |
+
relevant_examples["context"]
|
113 |
+
) # The support document for the model
|
114 |
+
|
115 |
+
# Generate answer
|
116 |
+
question_doc = f"question: {question} context: {doc}"
|
117 |
+
return generate_answer(question_doc)
|
118 |
+
|
119 |
+
|
120 |
+
input_box = gr.Textbox(label="Question")
|
121 |
+
output_box = gr.Textbox(label="Answer")
|
122 |
+
description = """
|
123 |
+
<div style="text-align: center;">
|
124 |
+
<p style="font-style: italic;"> Disclaimer: This is just a stupid demo and it craches a lot. Don't take it too seriously.</p>
|
125 |
+
✌😎
|
126 |
+
</div>
|
127 |
+
"""
|
128 |
+
|
129 |
+
|
130 |
+
demo = gr.Interface(
|
131 |
+
fn=predict, inputs=input_box, outputs=output_box, description=description
|
132 |
+
).queue()
|
133 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
sentence-transformers
|
3 |
+
datasets
|
4 |
+
torch
|
5 |
+
beautifulsoup4
|
6 |
+
requests
|
7 |
+
numpy
|
8 |
+
faiss-cpu
|