0llheaven commited on
Commit
d24166a
·
verified ·
1 Parent(s): 2a83f54

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +64 -0
app.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoImageProcessor, AutoModelForObjectDetection
3
+ import torch
4
+ from PIL import Image, ImageDraw
5
+
6
+ # Load the model and processor
7
+ processor = AutoImageProcessor.from_pretrained("0llheaven/Conditional-detr-finetuned-V5")
8
+ model = AutoModelForObjectDetection.from_pretrained("0llheaven/Conditional-detr-finetuned-V5")
9
+
10
+ def detect_objects(image, score_threshold):
11
+ # Convert image to RGB if it's grayscale
12
+ if image.mode != "RGB":
13
+ image = image.convert("RGB")
14
+
15
+ # Prepare input for the model
16
+ inputs = processor(images=image, return_tensors="pt")
17
+ outputs = model(**inputs)
18
+
19
+ # Filter predictions based on the user-defined score threshold
20
+ target_sizes = torch.tensor([image.size[::-1]])
21
+ results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)
22
+
23
+ labels_output = []
24
+ no_detection = True
25
+
26
+ # Draw bounding boxes around detected objects
27
+ draw = ImageDraw.Draw(image)
28
+ for result in results:
29
+ scores = result["scores"]
30
+ labels = result["labels"]
31
+ boxes = result["boxes"]
32
+
33
+ for score, label, box in zip(scores, labels, boxes):
34
+ if score >= score_threshold: # Only draw if score is above threshold
35
+ no_detection = False
36
+ box = [round(i, 2) for i in box.tolist()]
37
+
38
+ if label.item() == 0:
39
+ label_name = "Pneumonia"
40
+ else label.item() == 1:
41
+ label_name = "Normal"
42
+
43
+ draw.rectangle(box, outline="red", width=3)
44
+ draw.text((box[0], box[1]), f"{label_name}: {round(score.item(), 3)}", fill="red")
45
+ labels_output.append(f"{label_name}: {round(score.item(), 3)}")
46
+
47
+ # If no detections, set label as 'Other'
48
+ if no_detection:
49
+ labels_output.append("Other")
50
+
51
+ return image, "\n".join(labels_output)
52
+
53
+ # Create the Gradio interface
54
+ interface = gr.Interface(
55
+ fn=detect_objects,
56
+ inputs=[gr.Image(type="pil"), gr.Slider(0, 1, value=0.5, label="Score Threshold")], # Add slider for score threshold
57
+ # outputs=gr.Image(type="pil"), # Corrected output type
58
+ outputs=[gr.Image(type="pil"), gr.Textbox(label="Detected Objects")],
59
+ title="Object Detection with Transformers",
60
+ description="Upload an image to detect objects using a fine-tuned Conditional-DETR model."
61
+ )
62
+
63
+ # Launch the interface
64
+ interface.launch()