κΉ€μ˜μ€‘ commited on
Commit
1d0d99f
Β·
1 Parent(s): b758e84

modify segmentation

Browse files
Files changed (1) hide show
  1. app.py +20 -26
app.py CHANGED
@@ -13,18 +13,20 @@ from langchain.chains import ConversationalRetrievalChain
13
  from htmlTemplates import css, bot_template, user_template
14
  from langchain.llms import HuggingFaceHub, LlamaCpp, CTransformers # For loading transformer models.
15
  from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader
16
- import tempfile # μž„μ‹œ νŒŒμΌμ„ μƒμ„±ν•˜κΈ° μœ„ν•œ λΌμ΄λΈŒλŸ¬λ¦¬μž…λ‹ˆλ‹€.
17
  import os
18
 
 
19
  # PDF λ¬Έμ„œλ‘œλΆ€ν„° ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•˜λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
20
  def get_pdf_text(pdf_docs):
21
- temp_dir = tempfile.TemporaryDirectory() # μž„μ‹œ 디렉토리λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
22
- temp_filepath = os.path.join(temp_dir.name, pdf_docs.name) # μž„μ‹œ 파일 경둜λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
23
  with open(temp_filepath, "wb") as f: # μž„μ‹œ νŒŒμΌμ„ λ°”μ΄λ„ˆλ¦¬ μ“°κΈ° λͺ¨λ“œλ‘œ μ—½λ‹ˆλ‹€.
24
- f.write(pdf_docs.getvalue()) # PDF λ¬Έμ„œμ˜ λ‚΄μš©μ„ μž„μ‹œ νŒŒμΌμ— μ”λ‹ˆλ‹€.
25
- pdf_loader = PyPDFLoader(temp_filepath) # PyPDFLoaderλ₯Ό μ‚¬μš©ν•΄ PDFλ₯Ό λ‘œλ“œν•©λ‹ˆλ‹€.
26
- pdf_doc = pdf_loader.load() # ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•©λ‹ˆλ‹€.
27
- return pdf_doc # μΆ”μΆœν•œ ν…μŠ€νŠΈλ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€
 
28
 
29
  # 과제
30
  # μ•„λž˜ ν…μŠ€νŠΈ μΆ”μΆœ ν•¨μˆ˜λ₯Ό μž‘μ„±
@@ -48,6 +50,7 @@ def get_csv_file(csv_docs):
48
  csv_doc = csv_loader.load() # ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•©λ‹ˆλ‹€.
49
  return csv_doc # μΆ”μΆœν•œ ν…μŠ€νŠΈλ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.
50
 
 
51
  def get_json_file(json_docs):
52
  try:
53
  temp_dir = tempfile.TemporaryDirectory() # μž„μ‹œ 디렉토리λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
@@ -65,27 +68,17 @@ def get_json_file(json_docs):
65
  # Handle the exception, raise or return a default value as needed
66
  return None # μ˜ˆμ™Έκ°€ λ°œμƒν•˜λ©΄ None을 λ°˜ν™˜ν•˜κ±°λ‚˜ λ‹€λ₯Έ 처리λ₯Ό μˆ˜ν–‰ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
67
 
68
- #json decoding μ˜ˆμ™Έ 처리
69
- def load(self):
70
- content = self.file_path.read_text(encoding="utf-8")
71
-
72
- try:
73
- data = json.loads(content)
74
- self._parse(data, docs)
75
- except json.JSONDecodeError as e:
76
- print(f"Error decoding JSON: {e}")
77
 
78
-
79
  # λ¬Έμ„œλ“€μ„ μ²˜λ¦¬ν•˜μ—¬ ν…μŠ€νŠΈ 청크둜 λ‚˜λˆ„λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
80
  def get_text_chunks(documents):
81
  text_splitter = RecursiveCharacterTextSplitter(
82
- chunk_size=1000, # 청크의 크기λ₯Ό μ§€μ •ν•©λ‹ˆλ‹€.
83
- chunk_overlap=200, # 청크 μ‚¬μ΄μ˜ 쀑볡을 μ§€μ •ν•©λ‹ˆλ‹€.
84
- length_function=len # ν…μŠ€νŠΈμ˜ 길이λ₯Ό μΈ‘μ •ν•˜λŠ” ν•¨μˆ˜λ₯Ό μ§€μ •ν•©λ‹ˆλ‹€.
85
  )
86
 
87
- documents = text_splitter.split_documents(documents) # λ¬Έμ„œλ“€μ„ 청크둜 λ‚˜λˆ•λ‹ˆλ‹€
88
- return documents # λ‚˜λˆˆ 청크λ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.
89
 
90
 
91
  # ν…μŠ€νŠΈ μ²­ν¬λ“€λ‘œλΆ€ν„° 벑터 μŠ€ν† μ–΄λ₯Ό μƒμ„±ν•˜λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
@@ -93,15 +86,15 @@ def get_vectorstore(text_chunks):
93
  # OpenAI μž„λ² λ”© λͺ¨λΈμ„ λ‘œλ“œν•©λ‹ˆλ‹€. (Embedding models - Ada v2)
94
 
95
  embeddings = OpenAIEmbeddings()
96
- vectorstore = FAISS.from_documents(text_chunks, embeddings) # FAISS 벑터 μŠ€ν† μ–΄λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
97
 
98
- return vectorstore # μƒμ„±λœ 벑터 μŠ€ν† μ–΄λ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.
99
 
100
 
101
  def get_conversation_chain(vectorstore):
102
  gpt_model_name = 'gpt-3.5-turbo'
103
- llm = ChatOpenAI(model_name = gpt_model_name) #gpt-3.5 λͺ¨λΈ λ‘œλ“œ
104
-
105
  # λŒ€ν™” 기둝을 μ €μž₯ν•˜κΈ° μœ„ν•œ λ©”λͺ¨λ¦¬λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
106
  memory = ConversationBufferMemory(
107
  memory_key='chat_history', return_messages=True)
@@ -113,6 +106,7 @@ def get_conversation_chain(vectorstore):
113
  )
114
  return conversation_chain
115
 
 
116
  # μ‚¬μš©μž μž…λ ₯을 μ²˜λ¦¬ν•˜λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
117
  def handle_userinput(user_question):
118
  # λŒ€ν™” 체인을 μ‚¬μš©ν•˜μ—¬ μ‚¬μš©μž μ§ˆλ¬Έμ— λŒ€ν•œ 응닡을 μƒμ„±ν•©λ‹ˆλ‹€.
 
13
  from htmlTemplates import css, bot_template, user_template
14
  from langchain.llms import HuggingFaceHub, LlamaCpp, CTransformers # For loading transformer models.
15
  from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader
16
+ import tempfile # μž„μ‹œ νŒŒμΌμ„ μƒμ„±ν•˜κΈ° μœ„ν•œ λΌμ΄λΈŒλŸ¬λ¦¬μž…λ‹ˆλ‹€.
17
  import os
18
 
19
+
20
  # PDF λ¬Έμ„œλ‘œλΆ€ν„° ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•˜λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
21
  def get_pdf_text(pdf_docs):
22
+ temp_dir = tempfile.TemporaryDirectory() # μž„μ‹œ 디렉토리λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
23
+ temp_filepath = os.path.join(temp_dir.name, pdf_docs.name) # μž„μ‹œ 파일 경둜λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
24
  with open(temp_filepath, "wb") as f: # μž„μ‹œ νŒŒμΌμ„ λ°”μ΄λ„ˆλ¦¬ μ“°κΈ° λͺ¨λ“œλ‘œ μ—½λ‹ˆλ‹€.
25
+ f.write(pdf_docs.getvalue()) # PDF λ¬Έμ„œμ˜ λ‚΄μš©μ„ μž„μ‹œ νŒŒμΌμ— μ”λ‹ˆλ‹€.
26
+ pdf_loader = PyPDFLoader(temp_filepath) # PyPDFLoaderλ₯Ό μ‚¬μš©ν•΄ PDFλ₯Ό λ‘œλ“œν•©λ‹ˆλ‹€.
27
+ pdf_doc = pdf_loader.load() # ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•©λ‹ˆλ‹€.
28
+ return pdf_doc # μΆ”μΆœν•œ ν…μŠ€νŠΈλ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€
29
+
30
 
31
  # 과제
32
  # μ•„λž˜ ν…μŠ€νŠΈ μΆ”μΆœ ν•¨μˆ˜λ₯Ό μž‘μ„±
 
50
  csv_doc = csv_loader.load() # ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•©λ‹ˆλ‹€.
51
  return csv_doc # μΆ”μΆœν•œ ν…μŠ€νŠΈλ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.
52
 
53
+
54
  def get_json_file(json_docs):
55
  try:
56
  temp_dir = tempfile.TemporaryDirectory() # μž„μ‹œ 디렉토리λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
 
68
  # Handle the exception, raise or return a default value as needed
69
  return None # μ˜ˆμ™Έκ°€ λ°œμƒν•˜λ©΄ None을 λ°˜ν™˜ν•˜κ±°λ‚˜ λ‹€λ₯Έ 처리λ₯Ό μˆ˜ν–‰ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
70
 
 
 
 
 
 
 
 
 
 
71
 
 
72
  # λ¬Έμ„œλ“€μ„ μ²˜λ¦¬ν•˜μ—¬ ν…μŠ€νŠΈ 청크둜 λ‚˜λˆ„λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
73
  def get_text_chunks(documents):
74
  text_splitter = RecursiveCharacterTextSplitter(
75
+ chunk_size=1000, # 청크의 크기λ₯Ό μ§€μ •ν•©λ‹ˆλ‹€.
76
+ chunk_overlap=200, # 청크 μ‚¬μ΄μ˜ 쀑볡을 μ§€μ •ν•©λ‹ˆλ‹€.
77
+ length_function=len # ν…μŠ€νŠΈμ˜ 길이λ₯Ό μΈ‘μ •ν•˜λŠ” ν•¨μˆ˜λ₯Ό μ§€μ •ν•©λ‹ˆλ‹€.
78
  )
79
 
80
+ documents = text_splitter.split_documents(documents) # λ¬Έμ„œλ“€μ„ 청크둜 λ‚˜λˆ•λ‹ˆλ‹€
81
+ return documents # λ‚˜λˆˆ 청크λ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.
82
 
83
 
84
  # ν…μŠ€νŠΈ μ²­ν¬λ“€λ‘œλΆ€ν„° 벑터 μŠ€ν† μ–΄λ₯Ό μƒμ„±ν•˜λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
 
86
  # OpenAI μž„λ² λ”© λͺ¨λΈμ„ λ‘œλ“œν•©λ‹ˆλ‹€. (Embedding models - Ada v2)
87
 
88
  embeddings = OpenAIEmbeddings()
89
+ vectorstore = FAISS.from_documents(text_chunks, embeddings) # FAISS 벑터 μŠ€ν† μ–΄λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
90
 
91
+ return vectorstore # μƒμ„±λœ 벑터 μŠ€ν† μ–΄λ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.
92
 
93
 
94
  def get_conversation_chain(vectorstore):
95
  gpt_model_name = 'gpt-3.5-turbo'
96
+ llm = ChatOpenAI(model_name=gpt_model_name) # gpt-3.5 λͺ¨λΈ λ‘œλ“œ
97
+
98
  # λŒ€ν™” 기둝을 μ €μž₯ν•˜κΈ° μœ„ν•œ λ©”λͺ¨λ¦¬λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
99
  memory = ConversationBufferMemory(
100
  memory_key='chat_history', return_messages=True)
 
106
  )
107
  return conversation_chain
108
 
109
+
110
  # μ‚¬μš©μž μž…λ ₯을 μ²˜λ¦¬ν•˜λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
111
  def handle_userinput(user_question):
112
  # λŒ€ν™” 체인을 μ‚¬μš©ν•˜μ—¬ μ‚¬μš©μž μ§ˆλ¬Έμ— λŒ€ν•œ 응닡을 μƒμ„±ν•©λ‹ˆλ‹€.