|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Train a GAN using the techniques described in the paper |
|
"Alias-Free Generative Adversarial Networks".""" |
|
|
|
import os |
|
import click |
|
import re |
|
import json |
|
import tempfile |
|
import torch |
|
|
|
import dnnlib |
|
from training import training_loop |
|
from metrics import metric_main |
|
from torch_utils import training_stats |
|
from torch_utils import custom_ops |
|
import ast |
|
|
|
|
|
def subprocess_fn(rank, c, temp_dir): |
|
dnnlib.util.Logger(file_name=os.path.join(c.run_dir, 'log.txt'), file_mode='a', should_flush=True) |
|
|
|
|
|
if c.num_gpus > 1: |
|
init_file = os.path.abspath(os.path.join(temp_dir, '.torch_distributed_init')) |
|
if os.name == 'nt': |
|
init_method = 'file:///' + init_file.replace('\\', '/') |
|
torch.distributed.init_process_group(backend='gloo', init_method=init_method, rank=rank, world_size=c.num_gpus) |
|
else: |
|
init_method = f'file://{init_file}' |
|
torch.distributed.init_process_group(backend='nccl', init_method=init_method, rank=rank, world_size=c.num_gpus) |
|
|
|
|
|
sync_device = torch.device('cuda', rank) if c.num_gpus > 1 else None |
|
training_stats.init_multiprocessing(rank=rank, sync_device=sync_device) |
|
if rank != 0: |
|
custom_ops.verbosity = 'none' |
|
|
|
|
|
training_loop.training_loop(rank=rank, **c) |
|
|
|
|
|
|
|
def launch_training(c, desc, outdir, dry_run): |
|
dnnlib.util.Logger(should_flush=True) |
|
|
|
|
|
prev_run_dirs = [] |
|
if os.path.isdir(outdir): |
|
prev_run_dirs = [x for x in os.listdir(outdir) if os.path.isdir(os.path.join(outdir, x))] |
|
prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs] |
|
prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None] |
|
cur_run_id = max(prev_run_ids, default=-1) + 1 |
|
c.run_dir = os.path.join(outdir, f'{cur_run_id:05d}-{desc}') |
|
assert not os.path.exists(c.run_dir) |
|
|
|
|
|
print() |
|
print('Training options:') |
|
print(json.dumps(c, indent=2)) |
|
print() |
|
print(f'Output directory: {c.run_dir}') |
|
print(f'Number of GPUs: {c.num_gpus}') |
|
print(f'Batch size: {c.batch_size} images') |
|
print(f'Training duration: {c.total_kimg} kimg') |
|
print(f'Dataset path: {c.training_set_kwargs.path}') |
|
print(f'Dataset size: {c.training_set_kwargs.max_size} images') |
|
print(f'Dataset resolution: {c.training_set_kwargs.resolution}') |
|
print(f'Dataset labels: {c.training_set_kwargs.use_labels}') |
|
print(f'Dataset x-flips: {c.training_set_kwargs.xflip}') |
|
print() |
|
|
|
|
|
if dry_run: |
|
print('Dry run; exiting.') |
|
return |
|
|
|
|
|
print('Creating output directory...') |
|
os.makedirs(c.run_dir) |
|
with open(os.path.join(c.run_dir, 'training_options.json'), 'wt') as f: |
|
json.dump(c, f, indent=2) |
|
|
|
|
|
print('Launching processes...') |
|
torch.multiprocessing.set_start_method('spawn') |
|
with tempfile.TemporaryDirectory() as temp_dir: |
|
if c.num_gpus == 1: |
|
subprocess_fn(rank=0, c=c, temp_dir=temp_dir) |
|
else: |
|
torch.multiprocessing.spawn(fn=subprocess_fn, args=(c, temp_dir), nprocs=c.num_gpus) |
|
|
|
|
|
|
|
def init_dataset_kwargs(data, square=False): |
|
|
|
|
|
try: |
|
dataset_kwargs = dnnlib.EasyDict(class_name='training.dataset.ImageFolderDataset', path=data, use_labels=True, max_size=None, xflip=False, square=square) |
|
dataset_obj = dnnlib.util.construct_class_by_name(**dataset_kwargs) |
|
dataset_kwargs.resolution = dataset_obj.resolution |
|
dataset_kwargs.use_labels = dataset_obj.has_labels |
|
dataset_kwargs.max_size = len(dataset_obj) |
|
return dataset_kwargs, dataset_obj.name |
|
except IOError as err: |
|
raise click.ClickException(f'--data: {err}') |
|
|
|
print("out of dataset") |
|
|
|
|
|
def parse_comma_separated_list(s): |
|
if isinstance(s, list): |
|
return s |
|
if s is None or s.lower() == 'none' or s == '': |
|
return [] |
|
return s.split(',') |
|
|
|
|
|
|
|
@click.command() |
|
|
|
|
|
@click.option('--outdir', help='Where to save the results', metavar='DIR', required=True) |
|
@click.option('--cfg', help='Base configuration', type=click.Choice(['stylegan3-t', 'stylegan3-r', 'stylegan2']), required=True) |
|
@click.option('--data', help='Training data', metavar='PATH', required=True) |
|
@click.option('--gpus', help='Number of GPUs to use', metavar='INT', type=click.IntRange(min=1), required=True) |
|
@click.option('--batch', help='Total batch size', metavar='INT', type=click.IntRange(min=1), required=True) |
|
@click.option('--gamma', help='R1 regularization weight', metavar='FLOAT', type=click.FloatRange(min=0), required=True) |
|
@click.option('--square', help='True for square, False for rectangle', type=bool, metavar='BOOL', default=False) |
|
|
|
|
|
@click.option('--cond', help='Train conditional model', metavar='BOOL', type=bool, default=False, show_default=True) |
|
@click.option('--mirror', help='Enable dataset x-flips', metavar='BOOL', type=bool, default=False, show_default=True) |
|
@click.option('--aug', help='Augmentation mode', type=click.Choice(['noaug', 'ada', 'fixed']), default='ada', show_default=True) |
|
@click.option('--resume', help='Resume from given network pickle', metavar='[PATH|URL]', type=str) |
|
@click.option('--freezed', help='Freeze first layers of D', metavar='INT', type=click.IntRange(min=0), default=0, show_default=True) |
|
|
|
|
|
@click.option('--p', help='Probability for --aug=fixed', metavar='FLOAT', type=click.FloatRange(min=0, max=1), default=0.2, show_default=True) |
|
@click.option('--target', help='Target value for --aug=ada', metavar='FLOAT', type=click.FloatRange(min=0, max=1), default=0.6, show_default=True) |
|
@click.option('--batch-gpu', help='Limit batch size per GPU', metavar='INT', type=click.IntRange(min=1)) |
|
@click.option('--cbase', help='Capacity multiplier', metavar='INT', type=click.IntRange(min=1), default=32768, show_default=True) |
|
@click.option('--cmax', help='Max. feature maps', metavar='INT', type=click.IntRange(min=1), default=512, show_default=True) |
|
@click.option('--glr', help='G learning rate [default: varies]', metavar='FLOAT', type=click.FloatRange(min=0)) |
|
@click.option('--dlr', help='D learning rate', metavar='FLOAT', type=click.FloatRange(min=0), default=0.002, show_default=True) |
|
@click.option('--map-depth', help='Mapping network depth [default: varies]', metavar='INT', type=click.IntRange(min=1)) |
|
@click.option('--mbstd-group', help='Minibatch std group size', metavar='INT', type=click.IntRange(min=1), default=4, show_default=True) |
|
|
|
|
|
@click.option('--desc', help='String to include in result dir name', metavar='STR', type=str) |
|
@click.option('--metrics', help='Quality metrics', metavar='[NAME|A,B,C|none]', type=parse_comma_separated_list, default='fid50k_full', show_default=True) |
|
@click.option('--kimg', help='Total training duration', metavar='KIMG', type=click.IntRange(min=1), default=25000, show_default=True) |
|
@click.option('--tick', help='How often to print progress', metavar='KIMG', type=click.IntRange(min=1), default=4, show_default=True) |
|
@click.option('--snap', help='How often to save snapshots', metavar='TICKS', type=click.IntRange(min=1), default=50, show_default=True) |
|
@click.option('--seed', help='Random seed', metavar='INT', type=click.IntRange(min=0), default=0, show_default=True) |
|
@click.option('--fp32', help='Disable mixed-precision', metavar='BOOL', type=bool, default=False, show_default=True) |
|
@click.option('--nobench', help='Disable cuDNN benchmarking', metavar='BOOL', type=bool, default=False, show_default=True) |
|
@click.option('--workers', help='DataLoader worker processes', metavar='INT', type=click.IntRange(min=1), default=3, show_default=True) |
|
@click.option('-n','--dry-run', help='Print training options and exit', is_flag=True) |
|
|
|
def main(**kwargs): |
|
"""Train a GAN using the techniques described in the paper |
|
"Alias-Free Generative Adversarial Networks". |
|
|
|
Examples: |
|
|
|
\b |
|
# Train StyleGAN3-T for AFHQv2 using 8 GPUs. |
|
python train.py --outdir=~/training-runs --cfg=stylegan3-t --data=~/datasets/afhqv2-512x512.zip \\ |
|
--gpus=8 --batch=32 --gamma=8.2 --mirror=1 |
|
|
|
\b |
|
# Fine-tune StyleGAN3-R for MetFaces-U using 1 GPU, starting from the pre-trained FFHQ-U pickle. |
|
python train.py --outdir=~/training-runs --cfg=stylegan3-r --data=~/datasets/metfacesu-1024x1024.zip \\ |
|
--gpus=8 --batch=32 --gamma=6.6 --mirror=1 --kimg=5000 --snap=5 \\ |
|
--resume=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-ffhqu-1024x1024.pkl |
|
|
|
\b |
|
# Train StyleGAN2 for FFHQ at 1024x1024 resolution using 8 GPUs. |
|
python train.py --outdir=~/training-runs --cfg=stylegan2 --data=~/datasets/ffhq-1024x1024.zip \\ |
|
--gpus=8 --batch=32 --gamma=10 --mirror=1 --aug=noaug |
|
""" |
|
|
|
|
|
opts = dnnlib.EasyDict(kwargs) |
|
c = dnnlib.EasyDict() |
|
print('---- square: ',opts.square) |
|
c.G_kwargs = dnnlib.EasyDict(class_name=None, z_dim=512, w_dim=512, mapping_kwargs=dnnlib.EasyDict(),square=opts.square) |
|
c.D_kwargs = dnnlib.EasyDict(class_name='training.networks_stylegan2.Discriminator', block_kwargs=dnnlib.EasyDict(), mapping_kwargs=dnnlib.EasyDict(), epilogue_kwargs=dnnlib.EasyDict(),square=opts.square) |
|
c.G_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0,0.99], eps=1e-8) |
|
c.D_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0,0.99], eps=1e-8) |
|
c.loss_kwargs = dnnlib.EasyDict(class_name='training.loss.StyleGAN2Loss') |
|
c.data_loader_kwargs = dnnlib.EasyDict(pin_memory=True, prefetch_factor=2) |
|
|
|
|
|
c.training_set_kwargs, dataset_name = init_dataset_kwargs(data=opts.data, square=opts.square) |
|
if opts.cond and not c.training_set_kwargs.use_labels: |
|
raise click.ClickException('--cond=True requires labels specified in dataset.json') |
|
c.training_set_kwargs.use_labels = opts.cond |
|
c.training_set_kwargs.xflip = opts.mirror |
|
|
|
|
|
c.num_gpus = opts.gpus |
|
c.batch_size = opts.batch |
|
c.batch_gpu = opts.batch_gpu or opts.batch // opts.gpus |
|
c.G_kwargs.channel_base = c.D_kwargs.channel_base = opts.cbase |
|
c.G_kwargs.channel_max = c.D_kwargs.channel_max = opts.cmax |
|
c.G_kwargs.mapping_kwargs.num_layers = (8 if opts.cfg == 'stylegan2' else 2) if opts.map_depth is None else opts.map_depth |
|
c.D_kwargs.block_kwargs.freeze_layers = opts.freezed |
|
c.D_kwargs.epilogue_kwargs.mbstd_group_size = opts.mbstd_group |
|
c.loss_kwargs.r1_gamma = opts.gamma |
|
c.G_opt_kwargs.lr = (0.002 if opts.cfg == 'stylegan2' else 0.0025) if opts.glr is None else opts.glr |
|
c.D_opt_kwargs.lr = opts.dlr |
|
c.metrics = opts.metrics |
|
c.total_kimg = opts.kimg |
|
c.kimg_per_tick = opts.tick |
|
c.image_snapshot_ticks = c.network_snapshot_ticks = opts.snap |
|
c.random_seed = c.training_set_kwargs.random_seed = opts.seed |
|
c.data_loader_kwargs.num_workers = opts.workers |
|
|
|
|
|
if c.batch_size % c.num_gpus != 0: |
|
raise click.ClickException('--batch must be a multiple of --gpus') |
|
if c.batch_size % (c.num_gpus * c.batch_gpu) != 0: |
|
raise click.ClickException('--batch must be a multiple of --gpus times --batch-gpu') |
|
if c.batch_gpu < c.D_kwargs.epilogue_kwargs.mbstd_group_size: |
|
raise click.ClickException('--batch-gpu cannot be smaller than --mbstd') |
|
if any(not metric_main.is_valid_metric(metric) for metric in c.metrics): |
|
raise click.ClickException('\n'.join(['--metrics can only contain the following values:'] + metric_main.list_valid_metrics())) |
|
|
|
|
|
c.ema_kimg = c.batch_size * 10 / 32 |
|
if opts.cfg == 'stylegan2': |
|
c.G_kwargs.class_name = 'training.networks_stylegan2.Generator' |
|
c.loss_kwargs.style_mixing_prob = 0.9 |
|
c.loss_kwargs.pl_weight = 2 |
|
c.G_reg_interval = 4 |
|
c.G_kwargs.fused_modconv_default = 'inference_only' |
|
c.loss_kwargs.pl_no_weight_grad = True |
|
else: |
|
c.G_kwargs.class_name = 'training.networks_stylegan3.Generator' |
|
c.G_kwargs.magnitude_ema_beta = 0.5 ** (c.batch_size / (20 * 1e3)) |
|
if opts.cfg == 'stylegan3-r': |
|
c.G_kwargs.conv_kernel = 1 |
|
c.G_kwargs.channel_base *= 2 |
|
c.G_kwargs.channel_max *= 2 |
|
c.G_kwargs.use_radial_filters = True |
|
c.loss_kwargs.blur_init_sigma = 10 |
|
c.loss_kwargs.blur_fade_kimg = c.batch_size * 200 / 32 |
|
|
|
|
|
if opts.aug != 'noaug': |
|
c.augment_kwargs = dnnlib.EasyDict(class_name='training.augment.AugmentPipe', xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1) |
|
if opts.aug == 'ada': |
|
c.ada_target = opts.target |
|
if opts.aug == 'fixed': |
|
c.augment_p = opts.p |
|
|
|
|
|
if opts.resume is not None: |
|
c.resume_pkl = opts.resume |
|
c.ada_kimg = 100 |
|
c.ema_rampup = None |
|
c.loss_kwargs.blur_init_sigma = 0 |
|
|
|
|
|
if opts.fp32: |
|
c.G_kwargs.num_fp16_res = c.D_kwargs.num_fp16_res = 0 |
|
c.G_kwargs.conv_clamp = c.D_kwargs.conv_clamp = None |
|
if opts.nobench: |
|
c.cudnn_benchmark = False |
|
|
|
|
|
desc = f'{opts.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}' |
|
if opts.desc is not None: |
|
desc += f'-{opts.desc}' |
|
|
|
|
|
launch_training(c=c, desc=desc, outdir=opts.outdir, dry_run=opts.dry_run) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|
|
|