|
|
|
|
|
import numpy as np |
|
import PIL |
|
import PIL.Image |
|
import scipy |
|
import scipy.ndimage |
|
import dlib |
|
import copy |
|
from PIL import Image |
|
|
|
def get_landmark(img, detector, predictor): |
|
"""get landmark with dlib |
|
:return: np.array shape=(68, 2) |
|
""" |
|
|
|
|
|
dets = detector(img, 1) |
|
for k, d in enumerate(dets): |
|
shape = predictor(img, d.rect) |
|
t = list(shape.parts()) |
|
a = [] |
|
for tt in t: |
|
a.append([tt.x, tt.y]) |
|
lm = np.array(a) |
|
|
|
|
|
face_rect = [dets[0].rect.left(), dets[0].rect.top(), dets[0].rect.right(), dets[0].rect.bottom()] |
|
return lm, face_rect |
|
|
|
|
|
|
|
|
|
def align_face_for_insetgan(img, detector, predictor, output_size=256): |
|
""" |
|
:param img: numpy array rgb |
|
:return: PIL Image |
|
""" |
|
img_cp = copy.deepcopy(img) |
|
lm, face_rect = get_landmark(img, detector, predictor) |
|
|
|
lm_chin = lm[0: 17] |
|
lm_eyebrow_left = lm[17: 22] |
|
lm_eyebrow_right = lm[22: 27] |
|
lm_nose = lm[27: 31] |
|
lm_nostrils = lm[31: 36] |
|
lm_eye_left = lm[36: 42] |
|
lm_eye_right = lm[42: 48] |
|
lm_mouth_outer = lm[48: 60] |
|
lm_mouth_inner = lm[60: 68] |
|
|
|
|
|
eye_left = np.mean(lm_eye_left, axis=0) |
|
eye_right = np.mean(lm_eye_right, axis=0) |
|
eye_avg = (eye_left + eye_right) * 0.5 |
|
eye_to_eye = eye_right - eye_left |
|
mouth_left = lm_mouth_outer[0] |
|
mouth_right = lm_mouth_outer[6] |
|
mouth_avg = (mouth_left + mouth_right) * 0.5 |
|
eye_to_mouth = mouth_avg - eye_avg |
|
|
|
|
|
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] |
|
x /= np.hypot(*x) |
|
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) |
|
y = np.flipud(x) * [-1, 1] |
|
c = eye_avg + eye_to_mouth * 0.1 |
|
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) |
|
qsize = np.hypot(*x) * 2 |
|
|
|
|
|
|
|
img = PIL.Image.fromarray(img_cp) |
|
|
|
|
|
transform_size = output_size |
|
enable_padding = False |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
border = max(int(np.rint(qsize * 0.1)), 3) |
|
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), |
|
int(np.ceil(max(quad[:, 1])))) |
|
|
|
|
|
|
|
|
|
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: |
|
img = img.crop(crop) |
|
quad -= crop[0:2] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) |
|
|
|
|
|
|
|
|
|
|
|
return img, crop, face_rect |
|
|
|
|
|
|
|
|
|
def align_face_for_projector(img, detector, predictor, output_size): |
|
""" |
|
:param filepath: str |
|
:return: PIL Image |
|
""" |
|
|
|
img_cp = copy.deepcopy(img) |
|
lm, face_rect = get_landmark(img, detector, predictor) |
|
|
|
|
|
lm_chin = lm[0: 17] |
|
lm_eyebrow_left = lm[17: 22] |
|
lm_eyebrow_right = lm[22: 27] |
|
lm_nose = lm[27: 31] |
|
lm_nostrils = lm[31: 36] |
|
lm_eye_left = lm[36: 42] |
|
lm_eye_right = lm[42: 48] |
|
lm_mouth_outer = lm[48: 60] |
|
lm_mouth_inner = lm[60: 68] |
|
|
|
|
|
eye_left = np.mean(lm_eye_left, axis=0) |
|
eye_right = np.mean(lm_eye_right, axis=0) |
|
eye_avg = (eye_left + eye_right) * 0.5 |
|
eye_to_eye = eye_right - eye_left |
|
mouth_left = lm_mouth_outer[0] |
|
mouth_right = lm_mouth_outer[6] |
|
mouth_avg = (mouth_left + mouth_right) * 0.5 |
|
eye_to_mouth = mouth_avg - eye_avg |
|
|
|
|
|
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] |
|
x /= np.hypot(*x) |
|
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) |
|
y = np.flipud(x) * [-1, 1] |
|
c = eye_avg + eye_to_mouth * 0.1 |
|
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) |
|
qsize = np.hypot(*x) * 2 |
|
|
|
|
|
img = PIL.Image.fromarray(img_cp) |
|
|
|
transform_size = output_size |
|
enable_padding = True |
|
|
|
|
|
shrink = int(np.floor(qsize / output_size * 0.5)) |
|
if shrink > 1: |
|
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) |
|
img = img.resize(rsize, PIL.Image.ANTIALIAS) |
|
quad /= shrink |
|
qsize /= shrink |
|
|
|
|
|
border = max(int(np.rint(qsize * 0.1)), 3) |
|
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), |
|
int(np.ceil(max(quad[:, 1])))) |
|
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), |
|
min(crop[3] + border, img.size[1])) |
|
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: |
|
img = img.crop(crop) |
|
quad -= crop[0:2] |
|
|
|
|
|
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), |
|
int(np.ceil(max(quad[:, 1])))) |
|
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), |
|
max(pad[3] - img.size[1] + border, 0)) |
|
if enable_padding and max(pad) > border - 4: |
|
pad = np.maximum(pad, int(np.rint(qsize * 0.3))) |
|
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') |
|
h, w, _ = img.shape |
|
y, x, _ = np.ogrid[:h, :w, :1] |
|
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]), |
|
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3])) |
|
blur = qsize * 0.02 |
|
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) |
|
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) |
|
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') |
|
quad += pad[:2] |
|
|
|
|
|
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR) |
|
if output_size < transform_size: |
|
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) |
|
|
|
|
|
return img |
|
|
|
|
|
def reverse_quad_transform(image, quad_to_map_to, alpha): |
|
|
|
|
|
result = Image.new("RGBA",image.size) |
|
result_pixels = result.load() |
|
|
|
width, height = result.size |
|
|
|
for y in range(height): |
|
for x in range(width): |
|
result_pixels[x,y] = (0,0,0,0) |
|
|
|
p1 = (quad_to_map_to[0],quad_to_map_to[1]) |
|
p2 = (quad_to_map_to[2],quad_to_map_to[3]) |
|
p3 = (quad_to_map_to[4],quad_to_map_to[5]) |
|
p4 = (quad_to_map_to[6],quad_to_map_to[7]) |
|
|
|
p1_p2_vec = (p2[0] - p1[0],p2[1] - p1[1]) |
|
p4_p3_vec = (p3[0] - p4[0],p3[1] - p4[1]) |
|
|
|
for y in range(height): |
|
for x in range(width): |
|
pixel = image.getpixel((x,y)) |
|
|
|
y_percentage = y / float(height) |
|
x_percentage = x / float(width) |
|
|
|
|
|
pa = (p1[0] + p1_p2_vec[0] * y_percentage, p1[1] + p1_p2_vec[1] * y_percentage) |
|
pb = (p4[0] + p4_p3_vec[0] * y_percentage, p4[1] + p4_p3_vec[1] * y_percentage) |
|
|
|
pa_to_pb_vec = (pb[0] - pa[0],pb[1] - pa[1]) |
|
|
|
|
|
p = (pa[0] + pa_to_pb_vec[0] * x_percentage, pa[1] + pa_to_pb_vec[1] * x_percentage) |
|
|
|
try: |
|
result_pixels[p[0],p[1]] = (pixel[0],pixel[1],pixel[2],min(int(alpha * 255),pixel[3])) |
|
except Exception: |
|
pass |
|
|
|
return result |