|
|
|
|
|
import os |
|
|
|
import torch |
|
from tqdm import tqdm |
|
|
|
from pti.pti_configs import paths_config, hyperparameters, global_config |
|
from pti.training.coaches.base_coach import BaseCoach |
|
from utils.log_utils import log_images_from_w |
|
|
|
|
|
class MultiIDCoach(BaseCoach): |
|
|
|
def __init__(self, data_loader, use_wandb): |
|
super().__init__(data_loader, use_wandb) |
|
|
|
def train(self): |
|
self.G.synthesis.train() |
|
self.G.mapping.train() |
|
|
|
w_path_dir = f'{paths_config.embedding_base_dir}/{paths_config.input_data_id}' |
|
os.makedirs(w_path_dir, exist_ok=True) |
|
os.makedirs(f'{w_path_dir}/{paths_config.pti_results_keyword}', exist_ok=True) |
|
|
|
use_ball_holder = True |
|
w_pivots = [] |
|
images = [] |
|
|
|
for fname, image in self.data_loader: |
|
if self.image_counter >= hyperparameters.max_images_to_invert: |
|
break |
|
|
|
image_name = fname[0] |
|
if hyperparameters.first_inv_type == 'w+': |
|
embedding_dir = f'{w_path_dir}/{paths_config.e4e_results_keyword}/{image_name}' |
|
else: |
|
embedding_dir = f'{w_path_dir}/{paths_config.pti_results_keyword}/{image_name}' |
|
os.makedirs(embedding_dir, exist_ok=True) |
|
|
|
w_pivot = self.get_inversion(w_path_dir, image_name, image) |
|
w_pivots.append(w_pivot) |
|
images.append((image_name, image)) |
|
self.image_counter += 1 |
|
|
|
for i in tqdm(range(hyperparameters.max_pti_steps)): |
|
self.image_counter = 0 |
|
|
|
for data, w_pivot in zip(images, w_pivots): |
|
image_name, image = data |
|
|
|
if self.image_counter >= hyperparameters.max_images_to_invert: |
|
break |
|
|
|
real_images_batch = image.to(global_config.device) |
|
|
|
generated_images = self.forward(w_pivot) |
|
loss, l2_loss_val, loss_lpips = self.calc_loss(generated_images, real_images_batch, image_name, |
|
self.G, use_ball_holder, w_pivot) |
|
|
|
self.optimizer.zero_grad() |
|
loss.backward() |
|
self.optimizer.step() |
|
|
|
use_ball_holder = global_config.training_step % hyperparameters.locality_regularization_interval == 0 |
|
|
|
global_config.training_step += 1 |
|
self.image_counter += 1 |
|
|
|
if self.use_wandb: |
|
log_images_from_w(w_pivots, self.G, [image[0] for image in images]) |
|
|
|
|
|
|
|
snapshot_data = dict() |
|
snapshot_data['G_ema'] = self.G |
|
import pickle |
|
with open(f'{paths_config.checkpoints_dir}/model_{global_config.run_name}_multi_id.pkl', 'wb') as f: |
|
pickle.dump(snapshot_data, f) |
|
|