|
|
|
|
|
from legacy import save_obj, load_pkl |
|
import torch |
|
from torch.nn import functional as F |
|
import pandas as pd |
|
from .edit_config import attr_dict |
|
import os |
|
|
|
def conv_warper(layer, input, style, noise): |
|
|
|
conv = layer.conv |
|
batch, in_channel, height, width = input.shape |
|
|
|
style = style.view(batch, 1, in_channel, 1, 1) |
|
weight = conv.scale * conv.weight * style |
|
|
|
if conv.demodulate: |
|
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8) |
|
weight = weight * demod.view(batch, conv.out_channel, 1, 1, 1) |
|
|
|
weight = weight.view( |
|
batch * conv.out_channel, in_channel, conv.kernel_size, conv.kernel_size |
|
) |
|
|
|
if conv.upsample: |
|
input = input.view(1, batch * in_channel, height, width) |
|
weight = weight.view( |
|
batch, conv.out_channel, in_channel, conv.kernel_size, conv.kernel_size |
|
) |
|
weight = weight.transpose(1, 2).reshape( |
|
batch * in_channel, conv.out_channel, conv.kernel_size, conv.kernel_size |
|
) |
|
out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch) |
|
_, _, height, width = out.shape |
|
out = out.view(batch, conv.out_channel, height, width) |
|
out = conv.blur(out) |
|
|
|
elif conv.downsample: |
|
input = conv.blur(input) |
|
_, _, height, width = input.shape |
|
input = input.view(1, batch * in_channel, height, width) |
|
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch) |
|
_, _, height, width = out.shape |
|
out = out.view(batch, conv.out_channel, height, width) |
|
|
|
else: |
|
input = input.view(1, batch * in_channel, height, width) |
|
out = F.conv2d(input, weight, padding=conv.padding, groups=batch) |
|
_, _, height, width = out.shape |
|
out = out.view(batch, conv.out_channel, height, width) |
|
|
|
out = layer.noise(out, noise=noise) |
|
out = layer.activate(out) |
|
|
|
return out |
|
|
|
def decoder(G, style_space, latent, noise): |
|
|
|
out = G.input(latent) |
|
out = conv_warper(G.conv1, out, style_space[0], noise[0]) |
|
skip = G.to_rgb1(out, latent[:, 1]) |
|
|
|
i = 1 |
|
for conv1, conv2, noise1, noise2, to_rgb in zip( |
|
G.convs[::2], G.convs[1::2], noise[1::2], noise[2::2], G.to_rgbs |
|
): |
|
out = conv_warper(conv1, out, style_space[i], noise=noise1) |
|
out = conv_warper(conv2, out, style_space[i+1], noise=noise2) |
|
skip = to_rgb(out, latent[:, i + 2], skip) |
|
i += 2 |
|
image = skip |
|
|
|
return image |
|
|
|
def encoder_ifg(G, noise, attr_name, truncation=1, truncation_latent=None, |
|
latent_dir='latent_direction/ss/', |
|
step=0, total=0, real=False): |
|
if not real: |
|
styles = [noise] |
|
styles = [G.style(s) for s in styles] |
|
style_space = [] |
|
|
|
if truncation<1: |
|
if not real: |
|
style_t = [] |
|
for style in styles: |
|
style_t.append(truncation_latent + truncation * (style - truncation_latent)) |
|
styles = style_t |
|
else: |
|
truncation_latent = truncation_latent.repeat(18,1).unsqueeze(0) |
|
styles = torch.add(truncation_latent,torch.mul(torch.sub(noise,truncation_latent),truncation)) |
|
|
|
|
|
noise = [getattr(G.noises, 'noise_{}'.format(i)) for i in range(G.num_layers)] |
|
if not real: |
|
inject_index = G.n_latent |
|
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) |
|
else: latent=styles |
|
|
|
style_space.append(G.conv1.conv.modulation(latent[:, 0])) |
|
i = 1 |
|
for conv1, conv2, noise1, noise2, to_rgb in zip( |
|
G.convs[::2], G.convs[1::2], noise[1::2], noise[2::2], G.to_rgbs |
|
): |
|
style_space.append(conv1.conv.modulation(latent[:, i])) |
|
style_space.append(conv2.conv.modulation(latent[:, i+1])) |
|
i += 2 |
|
|
|
|
|
strength = attr_dict['interface_gan'][attr_name][0] |
|
|
|
if step != 0 and total != 0: |
|
strength = step / total * strength |
|
for i in range(15): |
|
style_vect = load_pkl(os.path.join(latent_dir, '{}/style_vect_mean_{}.pkl'.format(attr_name, i))) |
|
style_vect = torch.from_numpy(style_vect).to(latent.device).float() |
|
style_space[i] += style_vect * strength |
|
|
|
return style_space, latent, noise |
|
|
|
def encoder_ss(G, noise, attr_name, truncation=1, truncation_latent=None, |
|
statics_dir="latent_direction/ss_statics", |
|
latent_dir="latent_direction/ss/", |
|
step=0, total=0,real=False): |
|
if not real: |
|
styles = [noise] |
|
styles = [G.style(s) for s in styles] |
|
style_space = [] |
|
|
|
if truncation<1: |
|
if not real: |
|
style_t = [] |
|
for style in styles: |
|
style_t.append( |
|
truncation_latent + truncation * (style - truncation_latent) |
|
) |
|
styles = style_t |
|
else: |
|
truncation_latent = truncation_latent.repeat(18,1).unsqueeze(0) |
|
styles = torch.add(truncation_latent,torch.mul(torch.sub(noise,truncation_latent),truncation)) |
|
|
|
noise = [getattr(G.noises, 'noise_{}'.format(i)) for i in range(G.num_layers)] |
|
|
|
if not real: |
|
inject_index = G.n_latent |
|
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) |
|
else: latent = styles |
|
|
|
style_space.append(G.conv1.conv.modulation(latent[:, 0])) |
|
i = 1 |
|
for conv1, conv2, noise1, noise2, to_rgb in zip( |
|
G.convs[::2], G.convs[1::2], noise[1::2], noise[2::2], G.to_rgbs |
|
): |
|
style_space.append(conv1.conv.modulation(latent[:, i])) |
|
style_space.append(conv2.conv.modulation(latent[:, i+1])) |
|
i += 2 |
|
|
|
layer, strength, threshold = attr_dict['stylespace'][attr_name] |
|
|
|
statis_dir = os.path.join(statics_dir, "{}_statis/{}".format(attr_name, layer)) |
|
statis_csv_path = os.path.join(statis_dir, "statis.csv") |
|
statis_df = pd.read_csv(statis_csv_path) |
|
statis_df = statis_df.sort_values(by='channel', ascending=True) |
|
ch_mask = statis_df['strength'].values |
|
ch_mask = torch.from_numpy(ch_mask).to(latent.device).float() |
|
ch_mask = (ch_mask.abs()>threshold).float() |
|
style_vect = load_pkl(os.path.join(latent_dir, '{}/style_vect_mean_{}.pkl'.format(attr_name, layer))) |
|
style_vect = torch.from_numpy(style_vect).to(latent.device).float() |
|
|
|
style_vect = style_vect * ch_mask |
|
|
|
if step != 0 and total != 0: |
|
strength = step / total * strength |
|
|
|
style_space[layer] += style_vect * strength |
|
|
|
return style_space, latent, noise |
|
|
|
def encoder_sefa(G, noise, attr_name, truncation=1, truncation_latent=None, |
|
latent_dir='latent_direction/sefa/', |
|
step=0, total=0, real=False): |
|
if not real: |
|
styles = [noise] |
|
styles = [G.style(s) for s in styles] |
|
|
|
if truncation<1: |
|
if not real: |
|
style_t = [] |
|
for style in styles: |
|
style_t.append( |
|
truncation_latent + truncation * (style - truncation_latent) |
|
) |
|
styles = style_t |
|
else: |
|
truncation_latent = truncation_latent.repeat(18,1).unsqueeze(0) |
|
styles = torch.add(truncation_latent,torch.mul(torch.sub(noise,truncation_latent),truncation)) |
|
|
|
|
|
noise = [getattr(G.noises, 'noise_{}'.format(i)) for i in range(G.num_layers)] |
|
if not real: |
|
inject_index = G.n_latent |
|
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) |
|
else: latent = styles |
|
|
|
layer, strength = attr_dict['sefa'][attr_name] |
|
|
|
sefa_vect = torch.load(os.path.join(latent_dir, '{}.pt'.format(attr_name))).to(latent.device).float() |
|
if step != 0 and total != 0: |
|
strength = step / total * strength |
|
for l in layer: |
|
latent[:, l, :] += (sefa_vect * strength * 2) |
|
|
|
|
|
return latent, noise |
|
|