Spaces:
Running
Running
Initial PrepGraph backend
Browse files- chatbot_graph.py +210 -0
- chatbot_retriever.py +417 -0
- main_api.py +309 -0
- memory_store.py +110 -0
- requirements.txt +10 -0
chatbot_graph.py
ADDED
|
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# chatbot_graph.py
|
| 2 |
+
import os
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import logging
|
| 6 |
+
from typing import List
|
| 7 |
+
|
| 8 |
+
load_dotenv()
|
| 9 |
+
logging.basicConfig(level=logging.INFO)
|
| 10 |
+
logger = logging.getLogger(__name__)
|
| 11 |
+
logger.setLevel(logging.INFO)
|
| 12 |
+
|
| 13 |
+
# LLM client (Groq wrapper)
|
| 14 |
+
try:
|
| 15 |
+
from langchain_groq import ChatGroq
|
| 16 |
+
except Exception:
|
| 17 |
+
ChatGroq = None
|
| 18 |
+
logger.warning("langchain_groq.ChatGroq not importable. Ensure langchain-groq is installed in requirements.")
|
| 19 |
+
|
| 20 |
+
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
| 21 |
+
|
| 22 |
+
from chatbot_retriever import retrieve_node_from_rows
|
| 23 |
+
from memory_store import init_db, save_message, get_last_messages, build_gradio_history
|
| 24 |
+
|
| 25 |
+
# initialize DB early
|
| 26 |
+
init_db()
|
| 27 |
+
|
| 28 |
+
# Instantiate Groq LLM (will require GROQ_API_KEY in env)
|
| 29 |
+
GROQ_MODEL = os.getenv("GROQ_MODEL", "llama-3.1-8b-instant")
|
| 30 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY", None)
|
| 31 |
+
GROQ_TEMP = float(os.getenv("GROQ_TEMP", "0.2"))
|
| 32 |
+
|
| 33 |
+
if ChatGroq:
|
| 34 |
+
llm = ChatGroq(model=GROQ_MODEL, api_key=GROQ_API_KEY, temperature=GROQ_TEMP)
|
| 35 |
+
else:
|
| 36 |
+
llm = None
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def _extract_answer_from_response(response):
|
| 40 |
+
# robust extraction similar to your previous helper - simplified
|
| 41 |
+
try:
|
| 42 |
+
if hasattr(response, "content"):
|
| 43 |
+
c = response.content
|
| 44 |
+
if isinstance(c, str) and c.strip():
|
| 45 |
+
return c.strip()
|
| 46 |
+
if isinstance(c, (list, tuple)):
|
| 47 |
+
parts = [str(x) for x in c if x is not None]
|
| 48 |
+
if parts:
|
| 49 |
+
return "".join(parts).strip()
|
| 50 |
+
if isinstance(c, dict):
|
| 51 |
+
for key in ("answer", "text", "content", "output_text", "generated_text"):
|
| 52 |
+
v = c.get(key)
|
| 53 |
+
if v:
|
| 54 |
+
if isinstance(v, (list, tuple)):
|
| 55 |
+
return "".join([str(x) for x in v]).strip()
|
| 56 |
+
return str(v).strip()
|
| 57 |
+
if isinstance(response, dict):
|
| 58 |
+
for key in ("answer", "text", "content"):
|
| 59 |
+
v = response.get(key)
|
| 60 |
+
if v:
|
| 61 |
+
return str(v)
|
| 62 |
+
choices = response.get("choices") or response.get("outputs")
|
| 63 |
+
if isinstance(choices, (list, tuple)) and choices:
|
| 64 |
+
first = choices[0]
|
| 65 |
+
if isinstance(first, dict):
|
| 66 |
+
msg = first.get("message") or first.get("text") or first.get("content")
|
| 67 |
+
if msg:
|
| 68 |
+
if isinstance(msg, (list, tuple)):
|
| 69 |
+
return "".join([str(x) for x in msg])
|
| 70 |
+
return str(msg)
|
| 71 |
+
if hasattr(response, "generations"):
|
| 72 |
+
gens = getattr(response, "generations")
|
| 73 |
+
if gens:
|
| 74 |
+
for outer in gens:
|
| 75 |
+
for g in outer:
|
| 76 |
+
if hasattr(g, "text") and g.text:
|
| 77 |
+
return str(g.text)
|
| 78 |
+
if hasattr(g, "message") and getattr(g.message, "content", None):
|
| 79 |
+
return str(g.message.content)
|
| 80 |
+
s = str(response)
|
| 81 |
+
if s and s.strip():
|
| 82 |
+
return s.strip()
|
| 83 |
+
except Exception:
|
| 84 |
+
logger.exception("Failed extracting answer")
|
| 85 |
+
return None
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
SYSTEM_PROMPT = (
|
| 89 |
+
"You are PrepGraph — an accurate, concise AI tutor specialized in academic and technical content.\n"
|
| 90 |
+
"Rules:\n"
|
| 91 |
+
"1) Always prioritize answering the CURRENT user question directly and clearly.\n"
|
| 92 |
+
"2) Refer to provided CONTEXT (delimited below) if relevant. Cite which doc (filename) or say 'from provided context' when applicable.\n"
|
| 93 |
+
"3) If the current query is unclear, use ONLY the immediate previous user question to infer intent — not older ones.\n"
|
| 94 |
+
"4) Provide step-by-step explanations when appropriate, using short, structured points.\n"
|
| 95 |
+
"5) Include ASCII diagrams or flowcharts if they help understanding (e.g., for protocols, layers, architectures, etc.).\n"
|
| 96 |
+
"6) If the context is insufficient or ambiguous, clearly say 'I’m unsure' and specify what extra information is needed.\n"
|
| 97 |
+
"7) Avoid repetition, speculation, and hallucination — answer precisely what is asked.\n\n"
|
| 98 |
+
"CONTEXT:\n"
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
# ---- helper: call the LLM with a list of messages (SystemMessage + HumanMessage...) ----
|
| 102 |
+
def call_llm(messages: List):
|
| 103 |
+
if not llm:
|
| 104 |
+
raise RuntimeError("LLM client (ChatGroq) not configured or import failed. Set up langchain_groq and GROQ_API_KEY.")
|
| 105 |
+
# many wrappers accept the langchain message objects; keep using llm.invoke
|
| 106 |
+
response = llm.invoke(messages)
|
| 107 |
+
return response
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
# ---- Gradio UI functions ----
|
| 111 |
+
def load_history(user_id: str):
|
| 112 |
+
uid = (user_id or os.getenv("DEFAULT_USER", "vinayak")).strip() or "vinayak"
|
| 113 |
+
try:
|
| 114 |
+
hist = build_gradio_history(uid)
|
| 115 |
+
logger.info("Loaded %d messages for user %s", len(hist), uid)
|
| 116 |
+
return hist
|
| 117 |
+
except Exception:
|
| 118 |
+
logger.exception("Failed to load history for %s", uid)
|
| 119 |
+
return []
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def chat_interface(user_input: str, chat_state: List[dict], user_id: str):
|
| 123 |
+
"""
|
| 124 |
+
Receives user_input (string), chat_state (list of {'role':..., 'content':...}),
|
| 125 |
+
user_id (string). Returns: (clear_input_str, new_chat_state)
|
| 126 |
+
"""
|
| 127 |
+
uid = (user_id or os.getenv("DEFAULT_USER", "vinayak")).strip() or "vinayak"
|
| 128 |
+
history = chat_state or []
|
| 129 |
+
|
| 130 |
+
# Save user's message immediately
|
| 131 |
+
try:
|
| 132 |
+
save_message(uid, "user", user_input)
|
| 133 |
+
except Exception:
|
| 134 |
+
logger.exception("Failed to persist user message")
|
| 135 |
+
|
| 136 |
+
# Build rows to pass to retriever: get last messages from DB (ensures persistence)
|
| 137 |
+
rows = get_last_messages(uid, limit=200) # chronological order
|
| 138 |
+
|
| 139 |
+
# Retrieve context using hybrid retriever (uses last 3 user messages internally)
|
| 140 |
+
try:
|
| 141 |
+
retrieved = retrieve_node_from_rows(rows)
|
| 142 |
+
context = retrieved.get("context")
|
| 143 |
+
except Exception:
|
| 144 |
+
logger.exception("Retriever failed")
|
| 145 |
+
context = None
|
| 146 |
+
|
| 147 |
+
# Build prompt: SystemMessage + last 3 user messages (HumanMessage)
|
| 148 |
+
prompt_msgs = []
|
| 149 |
+
system_content = SYSTEM_PROMPT + (context or "No context found.")
|
| 150 |
+
prompt_msgs.append(SystemMessage(content=system_content))
|
| 151 |
+
|
| 152 |
+
# collect last 3 user messages (from rows)
|
| 153 |
+
last_users = [r[1] for r in rows if r[0] == "user"][-3:]
|
| 154 |
+
if not last_users:
|
| 155 |
+
# fallback to current input if DB empty
|
| 156 |
+
last_users = [user_input]
|
| 157 |
+
# append each of the last user messages as HumanMessage (preserves order)
|
| 158 |
+
for u in last_users:
|
| 159 |
+
prompt_msgs.append(HumanMessage(content=u))
|
| 160 |
+
|
| 161 |
+
# send to LLM
|
| 162 |
+
try:
|
| 163 |
+
raw = call_llm(prompt_msgs)
|
| 164 |
+
answer = _extract_answer_from_response(raw) or ""
|
| 165 |
+
except Exception as e:
|
| 166 |
+
logger.exception("LLM call failed")
|
| 167 |
+
answer = f"Sorry — I couldn't process that right now ({e})."
|
| 168 |
+
|
| 169 |
+
# persist assistant reply
|
| 170 |
+
try:
|
| 171 |
+
save_message(uid, "assistant", answer)
|
| 172 |
+
except Exception:
|
| 173 |
+
logger.exception("Failed to persist assistant message")
|
| 174 |
+
|
| 175 |
+
# update gradio chat state: append current user and assistant
|
| 176 |
+
history = history or load_history(uid) # in case front-end was empty, rehydrate
|
| 177 |
+
history.append({"role": "user", "content": user_input})
|
| 178 |
+
history.append({"role": "assistant", "content": answer})
|
| 179 |
+
|
| 180 |
+
# return: clear the input box (""), updated history for gr.Chatbot(type="messages")
|
| 181 |
+
return "", history
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
# ---- Minimal / attractive Gradio UI ----
|
| 185 |
+
with gr.Blocks(css=".gradio-container {max-width:900px; margin:0 auto;}") as demo:
|
| 186 |
+
gr.Markdown("# 🤖 PrepGraph — RAG Tutor")
|
| 187 |
+
with gr.Row():
|
| 188 |
+
user_id_input = gr.Textbox(label="User ID (will be used to persist your memory)", value=os.getenv("DEFAULT_USER", "vinayak"))
|
| 189 |
+
chatbot = gr.Chatbot(label="Conversation", type="messages")
|
| 190 |
+
|
| 191 |
+
with gr.Row():
|
| 192 |
+
msg = gr.Textbox(placeholder="Ask anything about your course material...", show_label=False)
|
| 193 |
+
send = gr.Button("Send")
|
| 194 |
+
|
| 195 |
+
with gr.Row():
|
| 196 |
+
clear_ui = gr.Button("Clear Chat")
|
| 197 |
+
|
| 198 |
+
# Load history at page load (and when user_id changes)
|
| 199 |
+
demo.load(load_history, [user_id_input], [chatbot])
|
| 200 |
+
user_id_input.change(load_history, [user_id_input], [chatbot])
|
| 201 |
+
|
| 202 |
+
# Bind send
|
| 203 |
+
msg.submit(chat_interface, [msg, chatbot, user_id_input], [msg, chatbot])
|
| 204 |
+
send.click(chat_interface, [msg, chatbot, user_id_input], [msg, chatbot])
|
| 205 |
+
|
| 206 |
+
# just clears the UI, not the DB
|
| 207 |
+
clear_ui.click(lambda: [], None, chatbot)
|
| 208 |
+
|
| 209 |
+
if __name__ == "__main__":
|
| 210 |
+
demo.launch()
|
chatbot_retriever.py
ADDED
|
@@ -0,0 +1,417 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# chatbot_retriever.py
|
| 2 |
+
"""
|
| 3 |
+
Hybrid retriever:
|
| 4 |
+
- loads PDFs & PPTX (robust imports)
|
| 5 |
+
- chunks via RecursiveCharacterTextSplitter
|
| 6 |
+
- BM25 (rank_bm25) + FAISS (IVF when possible) using SentenceTransformers
|
| 7 |
+
- returns a combined context string limited by MAX_CONTEXT_CHARS
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import os
|
| 11 |
+
import re
|
| 12 |
+
import pickle
|
| 13 |
+
import logging
|
| 14 |
+
import shutil
|
| 15 |
+
import random
|
| 16 |
+
from typing import List, Optional, Dict, Any
|
| 17 |
+
|
| 18 |
+
import numpy as np
|
| 19 |
+
import faiss
|
| 20 |
+
|
| 21 |
+
from rank_bm25 import BM25Okapi
|
| 22 |
+
from langchain_community.document_loaders import UnstructuredFileLoader
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
# Document loaders: try langchain first, then community loader
|
| 26 |
+
try:
|
| 27 |
+
from langchain.document_loaders import PyPDFLoader, UnstructuredPowerPointLoader
|
| 28 |
+
except Exception:
|
| 29 |
+
# fallback to community package (older installations)
|
| 30 |
+
try:
|
| 31 |
+
from langchain_community.document_loaders import PyPDFLoader, UnstructuredPowerPointLoader
|
| 32 |
+
from langchain_community.document_loaders.powerpoint import UnstructuredPowerPointLoader
|
| 33 |
+
except Exception:
|
| 34 |
+
raise ImportError("Please install langchain + langchain-community (or upgrade).")
|
| 35 |
+
|
| 36 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 37 |
+
from sentence_transformers import SentenceTransformer
|
| 38 |
+
|
| 39 |
+
# ---------- Config ----------
|
| 40 |
+
DATA_DIR = os.getenv("DATA_DIR", "data")
|
| 41 |
+
CACHE_DIR = os.getenv("CACHE_DIR", ".ragg_cache")
|
| 42 |
+
CHUNKS_CACHE = os.path.join(CACHE_DIR, "chunks.pkl")
|
| 43 |
+
BM25_CACHE = os.path.join(CACHE_DIR, "bm25.pkl")
|
| 44 |
+
|
| 45 |
+
FAISS_DIR = os.getenv("FAISS_DIR", "faiss_index")
|
| 46 |
+
FAISS_INDEX_PATH = os.path.join(FAISS_DIR, "index.faiss")
|
| 47 |
+
FAISS_META_PATH = os.path.join(FAISS_DIR, "meta.pkl")
|
| 48 |
+
|
| 49 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
| 50 |
+
os.makedirs(FAISS_DIR, exist_ok=True)
|
| 51 |
+
|
| 52 |
+
CHUNK_SIZE = int(os.getenv("CHUNK_SIZE", 400))
|
| 53 |
+
CHUNK_OVERLAP = int(os.getenv("CHUNK_OVERLAP", 80))
|
| 54 |
+
EMBED_MODEL = os.getenv("EMBED_MODEL", "all-MiniLM-L6-v2")
|
| 55 |
+
|
| 56 |
+
TOP_K_DOCS = int(os.getenv("TOP_K_DOCS", 3))
|
| 57 |
+
MAX_CONTEXT_CHARS = int(os.getenv("MAX_CONTEXT_CHARS", 4000))
|
| 58 |
+
|
| 59 |
+
# FAISS params
|
| 60 |
+
BATCH_SIZE = int(os.getenv("BATCH_SIZE", 256))
|
| 61 |
+
FAISS_NLIST = int(os.getenv("FAISS_NLIST", 100))
|
| 62 |
+
FAISS_TRAIN_SIZE = int(os.getenv("FAISS_TRAIN_SIZE", 2000))
|
| 63 |
+
FAISS_NPROBE = int(os.getenv("FAISS_NPROBE", 10))
|
| 64 |
+
SEARCH_EXPANSION = int(os.getenv("FAISS_SEARCH_EXPANSION", 5))
|
| 65 |
+
|
| 66 |
+
logger = logging.getLogger(__name__)
|
| 67 |
+
logger.setLevel(logging.INFO)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def detect_subject(fname: str) -> Optional[str]:
|
| 71 |
+
# light heuristic to guess subject code from filename
|
| 72 |
+
t = (fname or "").lower()
|
| 73 |
+
if "network" in t or "cn" in t:
|
| 74 |
+
return "cn"
|
| 75 |
+
if "distributed" in t or "dos" in t:
|
| 76 |
+
return "dos"
|
| 77 |
+
if "software" in t or "se" in t:
|
| 78 |
+
return "se"
|
| 79 |
+
return None
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def extract_year(s: str) -> Optional[str]:
|
| 83 |
+
m = re.search(r"\b(20\d{2})\b", s)
|
| 84 |
+
return m.group(1) if m else None
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
# ---------- Embeddings wrapper (SentenceTransformers) ----------
|
| 88 |
+
class Embeddings:
|
| 89 |
+
def __init__(self, model_name=EMBED_MODEL):
|
| 90 |
+
self.model_name = model_name
|
| 91 |
+
self.model = SentenceTransformer(model_name)
|
| 92 |
+
|
| 93 |
+
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
| 94 |
+
vecs = self.model.encode(texts, show_progress_bar=False, convert_to_numpy=True)
|
| 95 |
+
return [v.astype("float32") for v in vecs]
|
| 96 |
+
|
| 97 |
+
def embed_query(self, text: str) -> List[float]:
|
| 98 |
+
v = self.model.encode([text], show_progress_bar=False, convert_to_numpy=True)[0]
|
| 99 |
+
return v.astype("float32")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
# ---------- Load documents ----------
|
| 103 |
+
def load_all_docs(base_dir: str = DATA_DIR) -> List:
|
| 104 |
+
docs = []
|
| 105 |
+
if not os.path.isdir(base_dir):
|
| 106 |
+
logger.warning("Data dir does not exist: %s", base_dir)
|
| 107 |
+
return docs
|
| 108 |
+
|
| 109 |
+
def load_file(path: str, filename: str, category: str):
|
| 110 |
+
try:
|
| 111 |
+
fname = filename.lower()
|
| 112 |
+
if fname.endswith(".pdf"):
|
| 113 |
+
loader = PyPDFLoader(path)
|
| 114 |
+
elif fname.endswith(".pptx"):
|
| 115 |
+
loader = UnstructuredPowerPointLoader(path)
|
| 116 |
+
else:
|
| 117 |
+
return []
|
| 118 |
+
file_docs = loader.load()
|
| 119 |
+
subject = detect_subject(fname)
|
| 120 |
+
year = extract_year(fname)
|
| 121 |
+
for d in file_docs:
|
| 122 |
+
d.metadata["subject"] = subject
|
| 123 |
+
d.metadata["filename"] = filename
|
| 124 |
+
d.metadata["category"] = category
|
| 125 |
+
if year:
|
| 126 |
+
d.metadata["year"] = year
|
| 127 |
+
return file_docs
|
| 128 |
+
except Exception:
|
| 129 |
+
logger.exception("Failed to load %s", filename)
|
| 130 |
+
return []
|
| 131 |
+
|
| 132 |
+
# root files
|
| 133 |
+
for file in os.listdir(base_dir):
|
| 134 |
+
path = os.path.join(base_dir, file)
|
| 135 |
+
if os.path.isfile(path) and (file.lower().endswith(".pdf") or file.lower().endswith(".pptx")):
|
| 136 |
+
docs.extend(load_file(path, file, "syllabus"))
|
| 137 |
+
|
| 138 |
+
# optional pyqs directory
|
| 139 |
+
pyqs_dir = os.path.join(base_dir, "pyqs")
|
| 140 |
+
if os.path.isdir(pyqs_dir):
|
| 141 |
+
for file in os.listdir(pyqs_dir):
|
| 142 |
+
path = os.path.join(pyqs_dir, file)
|
| 143 |
+
if os.path.isfile(path) and file.lower().endswith(".pdf"):
|
| 144 |
+
docs.extend(load_file(path, file, "pyq"))
|
| 145 |
+
|
| 146 |
+
logger.info("Loaded %d raw document pages", len(docs))
|
| 147 |
+
return docs
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
# ---------- Build / load FAISS + BM25 ----------
|
| 151 |
+
def build_or_load_indexes(force_reindex: bool = False):
|
| 152 |
+
if os.getenv("FORCE_REINDEX", "0").lower() in ("1", "true", "yes"):
|
| 153 |
+
force_reindex = True
|
| 154 |
+
|
| 155 |
+
docs = load_all_docs(DATA_DIR)
|
| 156 |
+
if not docs:
|
| 157 |
+
logger.warning("No documents found. Returning empty indexes.")
|
| 158 |
+
return [], None, [], [], None
|
| 159 |
+
|
| 160 |
+
# chunking
|
| 161 |
+
if os.path.exists(CHUNKS_CACHE) and not force_reindex:
|
| 162 |
+
with open(CHUNKS_CACHE, "rb") as f:
|
| 163 |
+
chunks = pickle.load(f)
|
| 164 |
+
logger.info("Loaded %d chunks from cache.", len(chunks))
|
| 165 |
+
else:
|
| 166 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP)
|
| 167 |
+
chunks = splitter.split_documents(docs)
|
| 168 |
+
with open(CHUNKS_CACHE, "wb") as f:
|
| 169 |
+
pickle.dump(chunks, f)
|
| 170 |
+
logger.info("Created and cached %d chunks.", len(chunks))
|
| 171 |
+
|
| 172 |
+
corpus_texts = [c.page_content for c in chunks]
|
| 173 |
+
|
| 174 |
+
# BM25
|
| 175 |
+
if os.path.exists(BM25_CACHE) and not force_reindex:
|
| 176 |
+
try:
|
| 177 |
+
with open(BM25_CACHE, "rb") as f:
|
| 178 |
+
bm25_data = pickle.load(f)
|
| 179 |
+
bm25 = bm25_data.get("bm25")
|
| 180 |
+
tokenized = bm25_data.get("tokenized", [])
|
| 181 |
+
logger.info("Loaded BM25 from cache (n=%d)", len(corpus_texts))
|
| 182 |
+
except Exception:
|
| 183 |
+
logger.exception("Failed to load BM25 cache — rebuilding")
|
| 184 |
+
tokenized = [re.findall(r"\w+", t.lower()) for t in corpus_texts]
|
| 185 |
+
bm25 = BM25Okapi(tokenized)
|
| 186 |
+
with open(BM25_CACHE, "wb") as f:
|
| 187 |
+
pickle.dump({"bm25": bm25, "tokenized": tokenized}, f)
|
| 188 |
+
else:
|
| 189 |
+
tokenized = [re.findall(r"\w+", t.lower()) for t in corpus_texts]
|
| 190 |
+
bm25 = BM25Okapi(tokenized)
|
| 191 |
+
try:
|
| 192 |
+
with open(BM25_CACHE, "wb") as f:
|
| 193 |
+
pickle.dump({"bm25": bm25, "tokenized": tokenized}, f)
|
| 194 |
+
except Exception:
|
| 195 |
+
logger.warning("Could not write BM25 cache")
|
| 196 |
+
|
| 197 |
+
# Embeddings
|
| 198 |
+
embeddings = Embeddings()
|
| 199 |
+
|
| 200 |
+
metadatas = [c.metadata for c in chunks]
|
| 201 |
+
|
| 202 |
+
# load existing faiss index
|
| 203 |
+
if os.path.exists(FAISS_INDEX_PATH) and os.path.exists(FAISS_META_PATH) and not force_reindex:
|
| 204 |
+
try:
|
| 205 |
+
index = faiss.read_index(FAISS_INDEX_PATH)
|
| 206 |
+
with open(FAISS_META_PATH, "rb") as f:
|
| 207 |
+
meta = pickle.load(f)
|
| 208 |
+
texts = meta.get("texts", corpus_texts)
|
| 209 |
+
try:
|
| 210 |
+
index.nprobe = FAISS_NPROBE
|
| 211 |
+
except Exception:
|
| 212 |
+
pass
|
| 213 |
+
logger.info("Loaded FAISS index from disk (%s), entries=%d", FAISS_INDEX_PATH, len(texts))
|
| 214 |
+
return chunks, bm25, tokenized, corpus_texts, {"index": index, "texts": texts, "metadatas": metadatas, "embeddings": embeddings}
|
| 215 |
+
except Exception:
|
| 216 |
+
logger.exception("Failed to load FAISS index; rebuilding")
|
| 217 |
+
|
| 218 |
+
# force reindex cleanup
|
| 219 |
+
if force_reindex:
|
| 220 |
+
try:
|
| 221 |
+
shutil.rmtree(FAISS_DIR, ignore_errors=True)
|
| 222 |
+
os.makedirs(FAISS_DIR, exist_ok=True)
|
| 223 |
+
except Exception:
|
| 224 |
+
pass
|
| 225 |
+
|
| 226 |
+
# Build FAISS (memory-aware, batch)
|
| 227 |
+
logger.info("Building FAISS index (nlist=%d). This may take a while...", FAISS_NLIST)
|
| 228 |
+
total = len(corpus_texts)
|
| 229 |
+
sample_size = min(total, FAISS_TRAIN_SIZE)
|
| 230 |
+
sample_indices = random.sample(range(total), sample_size) if sample_size < total else list(range(total))
|
| 231 |
+
|
| 232 |
+
sample_embs = []
|
| 233 |
+
for i in range(0, len(sample_indices), BATCH_SIZE):
|
| 234 |
+
batch_idx = sample_indices[i:i + BATCH_SIZE]
|
| 235 |
+
batch_texts = [corpus_texts[j] for j in batch_idx]
|
| 236 |
+
try:
|
| 237 |
+
batch_vecs = embeddings.embed_documents(batch_texts)
|
| 238 |
+
except Exception:
|
| 239 |
+
batch_vecs = [embeddings.embed_query(t) for t in batch_texts]
|
| 240 |
+
sample_embs.extend(batch_vecs)
|
| 241 |
+
|
| 242 |
+
sample_np = np.array(sample_embs, dtype="float32")
|
| 243 |
+
if sample_np.ndim == 1:
|
| 244 |
+
sample_np = sample_np.reshape(1, -1)
|
| 245 |
+
d = sample_np.shape[1]
|
| 246 |
+
n_train_samples = sample_np.shape[0]
|
| 247 |
+
|
| 248 |
+
use_ivf = True
|
| 249 |
+
if n_train_samples < FAISS_NLIST:
|
| 250 |
+
logger.warning("Not enough training samples (%d) for FAISS_NLIST=%d — using Flat index", n_train_samples, FAISS_NLIST)
|
| 251 |
+
use_ivf = False
|
| 252 |
+
|
| 253 |
+
try:
|
| 254 |
+
if use_ivf:
|
| 255 |
+
index_desc = f"IVF{FAISS_NLIST},Flat"
|
| 256 |
+
index = faiss.index_factory(d, index_desc, faiss.METRIC_L2)
|
| 257 |
+
if not index.is_trained:
|
| 258 |
+
try:
|
| 259 |
+
index.train(sample_np)
|
| 260 |
+
logger.info("Trained IVF on %d samples", n_train_samples)
|
| 261 |
+
except Exception:
|
| 262 |
+
logger.exception("IVF training failed — falling back to Flat")
|
| 263 |
+
index = faiss.index_factory(d, "Flat", faiss.METRIC_L2)
|
| 264 |
+
else:
|
| 265 |
+
index = faiss.index_factory(d, "Flat", faiss.METRIC_L2)
|
| 266 |
+
except Exception:
|
| 267 |
+
logger.exception("Failed to create FAISS index — using Flat")
|
| 268 |
+
index = faiss.index_factory(d, "Flat", faiss.METRIC_L2)
|
| 269 |
+
|
| 270 |
+
# add vectors in batches
|
| 271 |
+
added = 0
|
| 272 |
+
for i in range(0, total, BATCH_SIZE):
|
| 273 |
+
batch_texts = corpus_texts[i:i + BATCH_SIZE]
|
| 274 |
+
try:
|
| 275 |
+
batch_vecs = embeddings.embed_documents(batch_texts)
|
| 276 |
+
except Exception:
|
| 277 |
+
batch_vecs = [embeddings.embed_query(t) for t in batch_texts]
|
| 278 |
+
batch_np = np.array(batch_vecs, dtype="float32")
|
| 279 |
+
if batch_np.ndim == 1:
|
| 280 |
+
batch_np = batch_np.reshape(1, -1)
|
| 281 |
+
index.add(batch_np)
|
| 282 |
+
added += batch_np.shape[0]
|
| 283 |
+
logger.info("FAISS: added %d / %d vectors", added, total)
|
| 284 |
+
|
| 285 |
+
try:
|
| 286 |
+
index.nprobe = FAISS_NPROBE
|
| 287 |
+
except Exception:
|
| 288 |
+
pass
|
| 289 |
+
|
| 290 |
+
try:
|
| 291 |
+
faiss.write_index(index, FAISS_INDEX_PATH)
|
| 292 |
+
with open(FAISS_META_PATH, "wb") as f:
|
| 293 |
+
pickle.dump({"texts": corpus_texts}, f)
|
| 294 |
+
logger.info("FAISS index saved to %s (entries=%d)", FAISS_INDEX_PATH, total)
|
| 295 |
+
except Exception:
|
| 296 |
+
logger.exception("Failed to persist FAISS index on disk")
|
| 297 |
+
|
| 298 |
+
return chunks, bm25, tokenized, corpus_texts, {"index": index, "texts": corpus_texts, "metadatas": metadatas, "embeddings": embeddings}
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
# ---------- Hybrid retrieve ----------
|
| 302 |
+
def _ensure_index_built():
|
| 303 |
+
if not hasattr(hybrid_retrieve, "_index_built") or not hybrid_retrieve._index_built:
|
| 304 |
+
hybrid_retrieve._chunks, hybrid_retrieve._bm25, hybrid_retrieve._tokenized, hybrid_retrieve._corpus, hybrid_retrieve._faiss = build_or_load_indexes()
|
| 305 |
+
hybrid_retrieve._index_built = True
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
def _faiss_search(query: str, top_k: int = TOP_K_DOCS, subject: Optional[str] = None):
|
| 309 |
+
faiss_data = hybrid_retrieve._faiss
|
| 310 |
+
if not faiss_data:
|
| 311 |
+
return []
|
| 312 |
+
|
| 313 |
+
index = faiss_data.get("index")
|
| 314 |
+
texts = faiss_data.get("texts", [])
|
| 315 |
+
metadatas = faiss_data.get("metadatas", [{}] * len(texts))
|
| 316 |
+
embeddings = faiss_data.get("embeddings")
|
| 317 |
+
|
| 318 |
+
try:
|
| 319 |
+
q_vec = embeddings.embed_query(query)
|
| 320 |
+
except Exception:
|
| 321 |
+
q_vec = embeddings.embed_documents([query])[0]
|
| 322 |
+
|
| 323 |
+
q_np = np.array(q_vec, dtype="float32").reshape(1, -1)
|
| 324 |
+
search_k = max(top_k * SEARCH_EXPANSION, top_k)
|
| 325 |
+
try:
|
| 326 |
+
distances, indices = index.search(q_np, int(search_k))
|
| 327 |
+
except Exception:
|
| 328 |
+
distances, indices = index.search(q_np, int(top_k))
|
| 329 |
+
|
| 330 |
+
results = []
|
| 331 |
+
for dist, idx in zip(distances[0], indices[0]):
|
| 332 |
+
if idx < 0 or idx >= len(texts):
|
| 333 |
+
continue
|
| 334 |
+
meta = metadatas[idx]
|
| 335 |
+
if subject and meta.get("subject") != subject:
|
| 336 |
+
continue
|
| 337 |
+
score_like = float(-dist)
|
| 338 |
+
results.append((score_like, meta, texts[idx]))
|
| 339 |
+
if len(results) >= top_k:
|
| 340 |
+
break
|
| 341 |
+
|
| 342 |
+
return results
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
def hybrid_retrieve(query: str, subject: Optional[str] = None, top_k: int = TOP_K_DOCS, max_chars: int = MAX_CONTEXT_CHARS) -> Dict[str, Any]:
|
| 346 |
+
if not query:
|
| 347 |
+
return {"context": None, "bm25_docs": [], "faiss_docs": [], "meta": []}
|
| 348 |
+
|
| 349 |
+
_ensure_index_built()
|
| 350 |
+
|
| 351 |
+
chunks = hybrid_retrieve._chunks
|
| 352 |
+
bm25 = hybrid_retrieve._bm25
|
| 353 |
+
|
| 354 |
+
# BM25
|
| 355 |
+
results_bm25 = []
|
| 356 |
+
try:
|
| 357 |
+
if bm25:
|
| 358 |
+
q_tokens = re.findall(r"\w+", query.lower())
|
| 359 |
+
scores = bm25.get_scores(q_tokens)
|
| 360 |
+
ranked_idx = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:top_k]
|
| 361 |
+
for i in ranked_idx:
|
| 362 |
+
results_bm25.append((float(scores[i]), chunks[i].metadata, chunks[i].page_content))
|
| 363 |
+
except Exception:
|
| 364 |
+
logger.exception("BM25 search failed")
|
| 365 |
+
|
| 366 |
+
# FAISS
|
| 367 |
+
results_faiss = []
|
| 368 |
+
try:
|
| 369 |
+
results_faiss = _faiss_search(query, top_k=top_k, subject=subject)
|
| 370 |
+
except Exception:
|
| 371 |
+
logger.exception("FAISS search failed")
|
| 372 |
+
|
| 373 |
+
# Merge and dedupe by text
|
| 374 |
+
merged_texts = []
|
| 375 |
+
merged_meta = []
|
| 376 |
+
for score, meta, text in results_bm25:
|
| 377 |
+
if text and text.strip() and text not in merged_texts:
|
| 378 |
+
merged_texts.append(text)
|
| 379 |
+
merged_meta.append({"source": meta.get("filename"), "subject": meta.get("subject"), "score": score})
|
| 380 |
+
for score, meta, text in results_faiss:
|
| 381 |
+
if text and text.strip() and text not in merged_texts:
|
| 382 |
+
merged_texts.append(text)
|
| 383 |
+
merged_meta.append({"source": meta.get("filename") if isinstance(meta, dict) else None, "subject": meta.get("subject") if isinstance(meta, dict) else None, "score": score})
|
| 384 |
+
|
| 385 |
+
# compose context parts with headers
|
| 386 |
+
context_parts = []
|
| 387 |
+
for i, t in enumerate(merged_texts):
|
| 388 |
+
header = f"\n\n===== DOC {i+1} =====\n"
|
| 389 |
+
context_parts.append(header + t)
|
| 390 |
+
context = "\n".join(context_parts).strip()
|
| 391 |
+
if not context:
|
| 392 |
+
return {"context": None, "bm25_docs": results_bm25, "faiss_docs": results_faiss, "meta": merged_meta}
|
| 393 |
+
|
| 394 |
+
if len(context) > max_chars:
|
| 395 |
+
context = context[:max_chars].rstrip() + "..."
|
| 396 |
+
|
| 397 |
+
return {"context": context, "bm25_docs": results_bm25, "faiss_docs": results_faiss, "meta": merged_meta}
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
# ---------- retrieve_node (for reuse) ----------
|
| 401 |
+
def _last_n_user_messages(rows: List[tuple], n: int = 3) -> List[str]:
|
| 402 |
+
"""Return only the latest user message for retrieval context."""
|
| 403 |
+
users = [r[1] for r in rows if r[0] == "user"]
|
| 404 |
+
return users[-n:] # only keep the last one
|
| 405 |
+
|
| 406 |
+
def retrieve_node_from_rows(rows: List[tuple], top_k: int = TOP_K_DOCS) -> Dict[str, Any]:
|
| 407 |
+
last_users = _last_n_user_messages(rows, n=3)
|
| 408 |
+
current_query = " ".join(last_users).strip() if last_users else ""
|
| 409 |
+
if not current_query:
|
| 410 |
+
return {"context": None, "direct": False}
|
| 411 |
+
detected = None
|
| 412 |
+
try:
|
| 413 |
+
detected = detect_subject(current_query)
|
| 414 |
+
except Exception:
|
| 415 |
+
detected = None
|
| 416 |
+
result = hybrid_retrieve(current_query, subject=detected, top_k=top_k, max_chars=MAX_CONTEXT_CHARS)
|
| 417 |
+
return {"context": result.get("context"), "direct": False}
|
main_api.py
ADDED
|
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# main_api.py
|
| 2 |
+
import os
|
| 3 |
+
import logging
|
| 4 |
+
import traceback
|
| 5 |
+
from typing import Optional, List, Dict, Any
|
| 6 |
+
import tiktoken
|
| 7 |
+
|
| 8 |
+
from fastapi import FastAPI, HTTPException, BackgroundTasks, UploadFile, File, Form
|
| 9 |
+
from fastapi.responses import JSONResponse, FileResponse
|
| 10 |
+
from fastapi.staticfiles import StaticFiles
|
| 11 |
+
from pydantic import BaseModel
|
| 12 |
+
import uvicorn
|
| 13 |
+
|
| 14 |
+
# import your existing modules (assumed in same directory)
|
| 15 |
+
from memory_store import init_db, save_message, get_last_messages, clear_user_memory, build_gradio_history # :contentReference[oaicite:4]{index=4}
|
| 16 |
+
from chatbot_retriever import build_or_load_indexes, hybrid_retrieve, retrieve_node_from_rows, load_all_docs # :contentReference[oaicite:5]{index=5}
|
| 17 |
+
from chatbot_graph import SYSTEM_PROMPT, call_llm, _extract_answer_from_response # :contentReference[oaicite:6]{index=6}
|
| 18 |
+
|
| 19 |
+
# ----------------- CORS SETUP -----------------
|
| 20 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 21 |
+
|
| 22 |
+
app = FastAPI(title="RAG Chat Backend", version="1.0")
|
| 23 |
+
|
| 24 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 25 |
+
|
| 26 |
+
app.add_middleware(
|
| 27 |
+
CORSMiddleware,
|
| 28 |
+
allow_origins=[
|
| 29 |
+
"http://localhost:5173",
|
| 30 |
+
"http://127.0.0.1:5173",
|
| 31 |
+
],
|
| 32 |
+
allow_credentials=True,
|
| 33 |
+
allow_methods=["*"], # ✅ lowercase 'allow_'
|
| 34 |
+
allow_headers=["*"], # ✅ lowercase 'allow_'
|
| 35 |
+
)
|
| 36 |
+
# ------------------------------------------------
|
| 37 |
+
|
| 38 |
+
from dotenv import load_dotenv
|
| 39 |
+
load_dotenv()
|
| 40 |
+
|
| 41 |
+
logger = logging.getLogger("rag_api")
|
| 42 |
+
logging.basicConfig(level=logging.INFO)
|
| 43 |
+
logger.setLevel(logging.INFO)
|
| 44 |
+
|
| 45 |
+
# initialize DB now
|
| 46 |
+
init_db()
|
| 47 |
+
|
| 48 |
+
# Global in-memory flag/object to check indexes loaded (populated by build_or_load_indexes)
|
| 49 |
+
INDEXES = {"built": False, "info": None}
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# ---------- Pydantic models ----------
|
| 53 |
+
class ChatRequest(BaseModel):
|
| 54 |
+
user_id: Optional[str] = None
|
| 55 |
+
message: str
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class ChatResponse(BaseModel):
|
| 59 |
+
user_id: str
|
| 60 |
+
message: str
|
| 61 |
+
assistant: str
|
| 62 |
+
history: List[Dict[str, str]]
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class RetrieveResponse(BaseModel):
|
| 66 |
+
query: str
|
| 67 |
+
context: Optional[str]
|
| 68 |
+
meta: List[Dict[str, Any]]
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# ---------- helpers ----------
|
| 72 |
+
def ensure_indexes(force_reindex: bool = False):
|
| 73 |
+
"""
|
| 74 |
+
Build or load indexes synchronously. This wraps build_or_load_indexes from chatbot_retriever.
|
| 75 |
+
"""
|
| 76 |
+
if INDEXES["built"] and not force_reindex:
|
| 77 |
+
return INDEXES["info"]
|
| 78 |
+
try:
|
| 79 |
+
chunks, bm25, tokenized, corpus_texts, faiss_data = build_or_load_indexes(force_reindex=force_reindex)
|
| 80 |
+
INDEXES["built"] = True
|
| 81 |
+
INDEXES["info"] = {"chunks_len": len(chunks) if chunks else 0, "corpus_len": len(corpus_texts) if corpus_texts else 0}
|
| 82 |
+
return INDEXES["info"]
|
| 83 |
+
except Exception:
|
| 84 |
+
logger.exception("Index build/load failed")
|
| 85 |
+
raise
|
| 86 |
+
|
| 87 |
+
# ===== Token limiter helper =====
|
| 88 |
+
enc = tiktoken.get_encoding("cl100k_base")
|
| 89 |
+
|
| 90 |
+
def trim_to_token_limit(texts, limit=4000):
|
| 91 |
+
"""Join text chunks until token limit is reached."""
|
| 92 |
+
joined = ""
|
| 93 |
+
for t in texts:
|
| 94 |
+
if len(enc.encode(joined + t)) > limit:
|
| 95 |
+
break
|
| 96 |
+
joined += t + "\n"
|
| 97 |
+
return joined
|
| 98 |
+
|
| 99 |
+
def extract_history_for_frontend(user_id: str, limit: int = 500):
|
| 100 |
+
return build_gradio_history(user_id)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
# ---------- Routes ----------
|
| 104 |
+
@app.get("/health")
|
| 105 |
+
def health():
|
| 106 |
+
"""Basic health check."""
|
| 107 |
+
return {"status": "ok", "indexes_built": INDEXES["built"]}
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
@app.post("/reindex")
|
| 111 |
+
def reindex(force: Optional[bool] = False):
|
| 112 |
+
"""
|
| 113 |
+
Force rebuild of indexes. This calls the same build_or_load_indexes used by your retriever module.
|
| 114 |
+
Use ?force=true to force.
|
| 115 |
+
"""
|
| 116 |
+
try:
|
| 117 |
+
info = ensure_indexes(force_reindex=bool(force))
|
| 118 |
+
return {"status": "ok", "info": info}
|
| 119 |
+
except Exception as e:
|
| 120 |
+
raise HTTPException(status_code=500, detail=f"Failed to build indexes: {e}")
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
@app.post("/upload")
|
| 124 |
+
async def upload_file(file: UploadFile = File(...), category: Optional[str] = Form("syllabus")):
|
| 125 |
+
"""
|
| 126 |
+
Upload PDF/PPTX into DATA_DIR (same dir used by chatbot_retriever.load_all_docs).
|
| 127 |
+
After upload you may call /reindex to include the file.
|
| 128 |
+
"""
|
| 129 |
+
from chatbot_retriever import DATA_DIR # keep using same constant
|
| 130 |
+
os.makedirs(DATA_DIR, exist_ok=True)
|
| 131 |
+
dest_path = os.path.join(DATA_DIR, file.filename)
|
| 132 |
+
try:
|
| 133 |
+
with open(dest_path, "wb") as f:
|
| 134 |
+
content = await file.read()
|
| 135 |
+
f.write(content)
|
| 136 |
+
return {"status": "ok", "filename": file.filename, "saved_to": dest_path}
|
| 137 |
+
except Exception as e:
|
| 138 |
+
logger.exception("upload failed")
|
| 139 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
@app.get("/docs_list")
|
| 143 |
+
def docs_list():
|
| 144 |
+
"""List files in DATA_DIR (documents available to retriever)."""
|
| 145 |
+
from chatbot_retriever import DATA_DIR
|
| 146 |
+
if not os.path.isdir(DATA_DIR):
|
| 147 |
+
return {"files": []}
|
| 148 |
+
files = [f for f in os.listdir(DATA_DIR) if os.path.isfile(os.path.join(DATA_DIR, f))]
|
| 149 |
+
return {"files": files}
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
@app.get("/retrieve", response_model=RetrieveResponse)
|
| 153 |
+
def retrieve(query: str, subject: Optional[str] = None, top_k: Optional[int] = None):
|
| 154 |
+
"""
|
| 155 |
+
Directly call the hybrid retriever for a query. Returns context + meta.
|
| 156 |
+
"""
|
| 157 |
+
try:
|
| 158 |
+
# ensure indexes built (but don't force)
|
| 159 |
+
ensure_indexes(force_reindex=False)
|
| 160 |
+
res = hybrid_retrieve(query=query, subject=subject, top_k=(top_k or None))
|
| 161 |
+
return {"query": query, "context": res.get("context"), "meta": res.get("meta", [])}
|
| 162 |
+
except Exception as e:
|
| 163 |
+
logger.exception("retrieve failed")
|
| 164 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
@app.get("/history/{user_id}")
|
| 168 |
+
def get_history(user_id: str, limit: Optional[int] = 500):
|
| 169 |
+
"""Return persisted history for a user (in same format your frontend expects)."""
|
| 170 |
+
try:
|
| 171 |
+
hist = extract_history_for_frontend(user_id)
|
| 172 |
+
if limit:
|
| 173 |
+
hist = hist[-int(limit):]
|
| 174 |
+
return {"user_id": user_id, "history": hist}
|
| 175 |
+
except Exception as e:
|
| 176 |
+
logger.exception("history fetch failed")
|
| 177 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
@app.post("/memory/clear")
|
| 181 |
+
def clear_memory(user_id: str):
|
| 182 |
+
"""Clear stored memory for user."""
|
| 183 |
+
try:
|
| 184 |
+
deleted = clear_user_memory(user_id)
|
| 185 |
+
return {"status": "ok", "deleted_rows": deleted}
|
| 186 |
+
except Exception as e:
|
| 187 |
+
logger.exception("clear failed")
|
| 188 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
@app.post("/chat", response_model=ChatResponse)
|
| 192 |
+
def chat(req: ChatRequest):
|
| 193 |
+
"""
|
| 194 |
+
Main chat endpoint.
|
| 195 |
+
- saves user message
|
| 196 |
+
- fetches last messages from sqlite memory
|
| 197 |
+
- runs retriever to get context
|
| 198 |
+
- builds the system prompt + last 3 user messages
|
| 199 |
+
- calls the LLM via call_llm (same wrapper imported from chatbot_graph)
|
| 200 |
+
- saves assistant reply and returns it + updated history
|
| 201 |
+
"""
|
| 202 |
+
uid = (req.user_id or os.getenv("DEFAULT_USER", "vinayak")).strip() or "vinayak"
|
| 203 |
+
if not req.message:
|
| 204 |
+
raise HTTPException(status_code=400, detail="message is required")
|
| 205 |
+
|
| 206 |
+
try:
|
| 207 |
+
# 1) persist user message
|
| 208 |
+
save_message(uid, "user", req.message)
|
| 209 |
+
|
| 210 |
+
# 2) get rows (chronological order) for retriever
|
| 211 |
+
rows = get_last_messages(uid, limit=200)
|
| 212 |
+
|
| 213 |
+
# 3) ensure indexes exist (non-force)
|
| 214 |
+
try:
|
| 215 |
+
ensure_indexes(force_reindex=False)
|
| 216 |
+
except Exception:
|
| 217 |
+
logger.warning("Indexes not built or failed. retriever may return no context.")
|
| 218 |
+
|
| 219 |
+
# 4) run retrieve_node_from_rows to get context (keeps same logic as your retriever glue)
|
| 220 |
+
try:
|
| 221 |
+
retrieved = retrieve_node_from_rows(rows)
|
| 222 |
+
context = retrieved.get("context")
|
| 223 |
+
except Exception:
|
| 224 |
+
logger.exception("retriever call failed")
|
| 225 |
+
context = None
|
| 226 |
+
|
| 227 |
+
# 5) build system prompt content
|
| 228 |
+
# ===== Combine retrieval context + last 2 user turns =====
|
| 229 |
+
MAX_TOKENS_CONTEXT = 3000
|
| 230 |
+
NUM_RECENT_TURNS = 2 # last 2 user + assistant pairs
|
| 231 |
+
|
| 232 |
+
# Get last few messages (both user + assistant)
|
| 233 |
+
recent_pairs = rows[-(NUM_RECENT_TURNS * 2):]
|
| 234 |
+
recent_chat = "\n".join([f"{r[0].upper()}: {r[1]}" for r in recent_pairs])
|
| 235 |
+
|
| 236 |
+
# Trim context to token-safe limit
|
| 237 |
+
context_texts = context.split("\n\n") if context else []
|
| 238 |
+
trimmed_context = trim_to_token_limit(context_texts, limit=MAX_TOKENS_CONTEXT)
|
| 239 |
+
|
| 240 |
+
# Final system prompt
|
| 241 |
+
system_content = SYSTEM_PROMPT
|
| 242 |
+
if trimmed_context:
|
| 243 |
+
system_content += "\n\n===== RETRIEVED CONTEXT =====\n" + trimmed_context
|
| 244 |
+
|
| 245 |
+
# Always include recent conversation (to maintain chat flow)
|
| 246 |
+
system_content += "\n\n===== RECENT CHAT =====\n" + recent_chat
|
| 247 |
+
|
| 248 |
+
# build prompt messages as list of simple dicts (call_llm expects same message format as in chatbot_graph)
|
| 249 |
+
# chatbot_graph.call_llm expects langchain messages (SystemMessage/HumanMessage) — we built that in original file.
|
| 250 |
+
# create messages as minimal objects that call_llm can accept (we rely on original call_llm).
|
| 251 |
+
from langchain_core.messages import SystemMessage, HumanMessage # re-use same message classes
|
| 252 |
+
prompt_msgs = [SystemMessage(content=system_content)]
|
| 253 |
+
|
| 254 |
+
# collect last 3 user messages
|
| 255 |
+
last_users = [r[1] for r in rows if r[0] == "user"][-1:]
|
| 256 |
+
if not last_users:
|
| 257 |
+
last_users = [req.message]
|
| 258 |
+
for u in last_users:
|
| 259 |
+
prompt_msgs.append(HumanMessage(content=u))
|
| 260 |
+
|
| 261 |
+
# 6) call LLM
|
| 262 |
+
try:
|
| 263 |
+
raw = call_llm(prompt_msgs)
|
| 264 |
+
answer = _extract_answer_from_response(raw) or ""
|
| 265 |
+
except Exception as e:
|
| 266 |
+
logger.exception("LLM call failed")
|
| 267 |
+
# If LLM client not configured (ChatGroq missing or no API KEY), return helpful message
|
| 268 |
+
detail = str(e)
|
| 269 |
+
answer = f"LLM call failed: {detail}"
|
| 270 |
+
|
| 271 |
+
# 7) persist assistant reply
|
| 272 |
+
try:
|
| 273 |
+
save_message(uid, "assistant", answer)
|
| 274 |
+
except Exception:
|
| 275 |
+
logger.exception("Failed to persist assistant message")
|
| 276 |
+
|
| 277 |
+
# 8) build history to return
|
| 278 |
+
history = extract_history_for_frontend(uid)
|
| 279 |
+
return {
|
| 280 |
+
"user_id": uid,
|
| 281 |
+
"message": req.message,
|
| 282 |
+
"assistant": answer,
|
| 283 |
+
"history": history,
|
| 284 |
+
}
|
| 285 |
+
except HTTPException:
|
| 286 |
+
raise
|
| 287 |
+
except Exception as e:
|
| 288 |
+
logger.exception("chat failed: %s", e)
|
| 289 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
# Mount static files for frontend
|
| 293 |
+
FRONTEND_DIR = os.path.join(os.path.dirname(__file__), "frontend", "dist")
|
| 294 |
+
if os.path.exists(FRONTEND_DIR):
|
| 295 |
+
app.mount("/assets", StaticFiles(directory=os.path.join(FRONTEND_DIR, "assets")), name="assets")
|
| 296 |
+
|
| 297 |
+
@app.get("/{full_path:path}")
|
| 298 |
+
async def serve_frontend(full_path: str):
|
| 299 |
+
"""Serve the React frontend for all non-API routes"""
|
| 300 |
+
if full_path and not full_path.startswith("api"):
|
| 301 |
+
file_path = os.path.join(FRONTEND_DIR, full_path)
|
| 302 |
+
if os.path.exists(file_path) and os.path.isfile(file_path):
|
| 303 |
+
return FileResponse(file_path)
|
| 304 |
+
return FileResponse(os.path.join(FRONTEND_DIR, "index.html"))
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
# Run with: uvicorn main_api:app --reload --host 127.0.0.1 --port 8000
|
| 308 |
+
if __name__ == "__main__":
|
| 309 |
+
uvicorn.run("main_api:app", host="127.0.0.1", port=8000, reload=True)
|
memory_store.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# memory_store.py
|
| 2 |
+
import sqlite3
|
| 3 |
+
import os
|
| 4 |
+
import logging
|
| 5 |
+
from typing import List, Tuple
|
| 6 |
+
|
| 7 |
+
DB_PATH = os.getenv("MEMORY_DB", "chat_memory.db")
|
| 8 |
+
MAX_MESSAGES_PER_USER = int(os.getenv("MAX_MESSAGES_PER_USER", 500))
|
| 9 |
+
|
| 10 |
+
logger = logging.getLogger(__name__)
|
| 11 |
+
logger.setLevel(logging.INFO)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def _get_conn():
|
| 15 |
+
# check_same_thread=False so Gradio threads can use the DB concurrently
|
| 16 |
+
return sqlite3.connect(DB_PATH, timeout=10, check_same_thread=False)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def init_db():
|
| 20 |
+
conn = _get_conn()
|
| 21 |
+
try:
|
| 22 |
+
with conn:
|
| 23 |
+
conn.execute(
|
| 24 |
+
"""
|
| 25 |
+
CREATE TABLE IF NOT EXISTS memory (
|
| 26 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 27 |
+
user_id TEXT,
|
| 28 |
+
role TEXT,
|
| 29 |
+
message TEXT,
|
| 30 |
+
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
| 31 |
+
)
|
| 32 |
+
"""
|
| 33 |
+
)
|
| 34 |
+
finally:
|
| 35 |
+
conn.close()
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def save_message(user_id: str, role: str, message: str) -> None:
|
| 39 |
+
if not user_id:
|
| 40 |
+
raise ValueError("user_id is required")
|
| 41 |
+
conn = _get_conn()
|
| 42 |
+
try:
|
| 43 |
+
with conn:
|
| 44 |
+
conn.execute(
|
| 45 |
+
"INSERT INTO memory (user_id, role, message) VALUES (?, ?, ?)",
|
| 46 |
+
(user_id, role, message),
|
| 47 |
+
)
|
| 48 |
+
# prune if too many
|
| 49 |
+
if MAX_MESSAGES_PER_USER and MAX_MESSAGES_PER_USER > 0:
|
| 50 |
+
cur = conn.execute(
|
| 51 |
+
"SELECT id FROM memory WHERE user_id = ? ORDER BY id DESC",
|
| 52 |
+
(user_id,),
|
| 53 |
+
)
|
| 54 |
+
rows = cur.fetchall()
|
| 55 |
+
if len(rows) > MAX_MESSAGES_PER_USER:
|
| 56 |
+
ids_to_delete = [r[0] for r in rows[MAX_MESSAGES_PER_USER:]]
|
| 57 |
+
conn.executemany("DELETE FROM memory WHERE id = ?", [(i,) for i in ids_to_delete])
|
| 58 |
+
except Exception:
|
| 59 |
+
logger.exception("Failed to save message for user %s", user_id)
|
| 60 |
+
raise
|
| 61 |
+
finally:
|
| 62 |
+
conn.close()
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def get_last_messages(user_id: str, limit: int = 200) -> List[Tuple[str, str, str]]:
|
| 66 |
+
"""
|
| 67 |
+
Return last `limit` messages in chronological order as (role, message, created_at)
|
| 68 |
+
"""
|
| 69 |
+
conn = _get_conn()
|
| 70 |
+
try:
|
| 71 |
+
cur = conn.cursor()
|
| 72 |
+
cur.execute(
|
| 73 |
+
"""
|
| 74 |
+
SELECT role, message, created_at FROM memory
|
| 75 |
+
WHERE user_id = ?
|
| 76 |
+
ORDER BY id DESC
|
| 77 |
+
LIMIT ?
|
| 78 |
+
""",
|
| 79 |
+
(user_id, limit),
|
| 80 |
+
)
|
| 81 |
+
rows = cur.fetchall()
|
| 82 |
+
return list(reversed(rows))
|
| 83 |
+
except Exception:
|
| 84 |
+
logger.exception("Failed to fetch messages for user %s", user_id)
|
| 85 |
+
return []
|
| 86 |
+
finally:
|
| 87 |
+
conn.close()
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def clear_user_memory(user_id: str) -> int:
|
| 91 |
+
"""Delete memory for user. Returns deleted rowcount."""
|
| 92 |
+
conn = _get_conn()
|
| 93 |
+
try:
|
| 94 |
+
with conn:
|
| 95 |
+
cur = conn.execute("DELETE FROM memory WHERE user_id = ?", (user_id,))
|
| 96 |
+
return cur.rowcount
|
| 97 |
+
except Exception:
|
| 98 |
+
logger.exception("Failed to clear memory for user %s", user_id)
|
| 99 |
+
raise
|
| 100 |
+
finally:
|
| 101 |
+
conn.close()
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def build_gradio_history(user_id: str) -> List[dict]:
|
| 105 |
+
"""
|
| 106 |
+
Return history formatted for gr.Chatbot with type='messages':
|
| 107 |
+
A chronological list of dicts: {'role':'user'|'assistant','content': '...'}
|
| 108 |
+
"""
|
| 109 |
+
rows = get_last_messages(user_id, limit=500)
|
| 110 |
+
return [{"role": r[0], "content": r[1]} for r in rows]
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
langchain
|
| 2 |
+
langchain-community
|
| 3 |
+
langchain-groq
|
| 4 |
+
sentence-transformers
|
| 5 |
+
faiss-cpu
|
| 6 |
+
pypdf
|
| 7 |
+
unstructured
|
| 8 |
+
python-dotenv
|
| 9 |
+
gradio
|
| 10 |
+
sqlite3-binary
|