05simran commited on
Commit
97fb162
·
verified ·
1 Parent(s): 0c1b4a6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +70 -160
app.py CHANGED
@@ -1,232 +1,142 @@
1
  import os
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
 
 
6
 
7
- # (Keep Constants as is)
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
14
-
15
  class BasicAgent:
16
  def __init__(self):
17
- model_name = "Qwen/Qwen3-0.6B-MLX-bf16" # or "Qwen/Qwen3‑0.6B" whichever you have access to
18
- print(f"Loading model {model_name} …")
 
 
19
  self.tokenizer = AutoTokenizer.from_pretrained(model_name)
20
  self.model = AutoModelForCausalLM.from_pretrained(
21
  model_name,
22
- torch_dtype="auto",
23
  device_map="auto"
24
  )
 
25
  self.generator = pipeline(
26
  "text-generation",
27
  model=self.model,
28
  tokenizer=self.tokenizer,
29
- max_new_tokens=200,
30
- temperature=0.0, # greedy / deterministic
31
  do_sample=False
32
  )
33
 
34
  def __call__(self, question: str) -> str:
35
- print("Received question:", question)
36
- # Use Qwen’s chat template (if available)
37
- messages = [
38
- {"role": "user", "content": question}
39
- ]
40
- # The Qwen tokenizer may support chat templates
41
- prompt = self.tokenizer.apply_chat_template(
42
- messages,
43
- tokenize=False,
44
- add_generation_prompt=True,
45
- enable_thinking=False # or True, depending on mode
46
- )
47
-
48
- outputs = self.generator(prompt)
49
- text = outputs[0]["generated_text"]
50
- # Remove prompt prefix, get only the answer part
51
- # The answer begins after prompt
52
- answer = text[len(prompt):].strip()
53
- # Return first line
54
  answer = answer.split("\n")[0].strip()
 
 
 
55
  return answer
56
 
 
 
57
 
58
- def run_and_submit_all( profile: gr.OAuthProfile | None):
59
- """
60
- Fetches all questions, runs the BasicAgent on them, submits all answers,
61
- and displays the results.
62
- """
63
- # --- Determine HF Space Runtime URL and Repo URL ---
64
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
65
-
66
- if profile:
67
- username= f"{profile.username}"
68
- print(f"User logged in: {username}")
69
- else:
70
- print("User not logged in.")
71
  return "Please Login to Hugging Face with the button.", None
 
 
72
 
73
  api_url = DEFAULT_API_URL
74
  questions_url = f"{api_url}/questions"
75
  submit_url = f"{api_url}/submit"
76
 
77
- # 1. Instantiate Agent ( modify this part to create your agent)
78
  try:
79
  agent = BasicAgent()
80
  except Exception as e:
81
- print(f"Error instantiating agent: {e}")
82
  return f"Error initializing agent: {e}", None
83
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
84
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
85
- print(agent_code)
86
 
87
- # 2. Fetch Questions
88
- print(f"Fetching questions from: {questions_url}")
89
  try:
90
- response = requests.get(questions_url, timeout=15)
91
- response.raise_for_status()
92
- questions_data = response.json()
93
- if not questions_data:
94
- print("Fetched questions list is empty.")
95
- return "Fetched questions list is empty or invalid format.", None
96
- print(f"Fetched {len(questions_data)} questions.")
97
- except requests.exceptions.RequestException as e:
98
- print(f"Error fetching questions: {e}")
99
- return f"Error fetching questions: {e}", None
100
- except requests.exceptions.JSONDecodeError as e:
101
- print(f"Error decoding JSON response from questions endpoint: {e}")
102
- print(f"Response text: {response.text[:500]}")
103
- return f"Error decoding server response for questions: {e}", None
104
  except Exception as e:
105
- print(f"An unexpected error occurred fetching questions: {e}")
106
- return f"An unexpected error occurred fetching questions: {e}", None
107
 
108
- # 3. Run your Agent
109
  results_log = []
110
  answers_payload = []
111
- print(f"Running agent on {len(questions_data)} questions...")
112
  for item in questions_data:
113
  task_id = item.get("task_id")
114
  question_text = item.get("question")
115
  if not task_id or question_text is None:
116
- print(f"Skipping item with missing task_id or question: {item}")
117
  continue
118
  try:
119
- submitted_answer = agent(question_text)
120
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
121
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
 
 
 
 
122
  except Exception as e:
123
- print(f"Error running agent on task {task_id}: {e}")
124
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
 
 
 
125
 
126
  if not answers_payload:
127
- print("Agent did not produce any answers to submit.")
128
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
129
 
130
- # 4. Prepare Submission
131
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
132
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
133
- print(status_update)
 
134
 
135
- # 5. Submit
136
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
137
  try:
138
- response = requests.post(submit_url, json=submission_data, timeout=60)
139
- response.raise_for_status()
140
- result_data = response.json()
141
- final_status = (
142
  f"Submission Successful!\n"
143
- f"User: {result_data.get('username')}\n"
144
- f"Overall Score: {result_data.get('score', 'N/A')}% "
145
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
146
- f"Message: {result_data.get('message', 'No message received.')}"
147
  )
148
- print("Submission successful.")
149
- results_df = pd.DataFrame(results_log)
150
- return final_status, results_df
151
- except requests.exceptions.HTTPError as e:
152
- error_detail = f"Server responded with status {e.response.status_code}."
153
- try:
154
- error_json = e.response.json()
155
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
156
- except requests.exceptions.JSONDecodeError:
157
- error_detail += f" Response: {e.response.text[:500]}"
158
- status_message = f"Submission Failed: {error_detail}"
159
- print(status_message)
160
- results_df = pd.DataFrame(results_log)
161
- return status_message, results_df
162
- except requests.exceptions.Timeout:
163
- status_message = "Submission Failed: The request timed out."
164
- print(status_message)
165
- results_df = pd.DataFrame(results_log)
166
- return status_message, results_df
167
- except requests.exceptions.RequestException as e:
168
- status_message = f"Submission Failed: Network error - {e}"
169
- print(status_message)
170
- results_df = pd.DataFrame(results_log)
171
- return status_message, results_df
172
  except Exception as e:
173
- status_message = f"An unexpected error occurred during submission: {e}"
174
- print(status_message)
175
- results_df = pd.DataFrame(results_log)
176
- return status_message, results_df
177
 
178
-
179
- # --- Build Gradio Interface using Blocks ---
180
  with gr.Blocks() as demo:
181
- gr.Markdown("# Basic Agent Evaluation Runner")
182
  gr.Markdown(
183
  """
184
- **Instructions:**
185
-
186
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
187
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
188
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
189
-
190
- ---
191
- **Disclaimers:**
192
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
193
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
194
  """
195
  )
196
 
197
  gr.LoginButton()
198
-
199
  run_button = gr.Button("Run Evaluation & Submit All Answers")
200
-
201
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
202
- # Removed max_rows=10 from DataFrame constructor
203
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
204
 
205
- run_button.click(
206
- fn=run_and_submit_all,
207
- outputs=[status_output, results_table]
208
- )
209
 
210
  if __name__ == "__main__":
211
- print("\n" + "-"*30 + " App Starting " + "-"*30)
212
- # Check for SPACE_HOST and SPACE_ID at startup for information
213
- space_host_startup = os.getenv("SPACE_HOST")
214
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
215
-
216
- if space_host_startup:
217
- print(f"✅ SPACE_HOST found: {space_host_startup}")
218
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
219
- else:
220
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
221
-
222
- if space_id_startup: # Print repo URLs if SPACE_ID is found
223
- print(f"✅ SPACE_ID found: {space_id_startup}")
224
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
225
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
226
- else:
227
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
228
-
229
- print("-"*(60 + len(" App Starting ")) + "\n")
230
-
231
- print("Launching Gradio Interface for Basic Agent Evaluation...")
232
- demo.launch(debug=True, share=False)
 
1
  import os
2
  import gradio as gr
3
  import requests
 
4
  import pandas as pd
5
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
6
+ import torch
7
 
 
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
+ # --- Agent Definition ---
 
 
 
12
  class BasicAgent:
13
  def __init__(self):
14
+ # Change this model to one you have access to
15
+ model_name = "Qwen/Qwen3-0.6B-MLX-bf16"
16
+ print(f"Loading model {model_name}")
17
+ # Load tokenizer and model
18
  self.tokenizer = AutoTokenizer.from_pretrained(model_name)
19
  self.model = AutoModelForCausalLM.from_pretrained(
20
  model_name,
21
+ torch_dtype=torch.float16,
22
  device_map="auto"
23
  )
24
+ # Create generation pipeline
25
  self.generator = pipeline(
26
  "text-generation",
27
  model=self.model,
28
  tokenizer=self.tokenizer,
29
+ max_new_tokens=100,
30
+ temperature=0.0,
31
  do_sample=False
32
  )
33
 
34
  def __call__(self, question: str) -> str:
35
+ print("Question:", question)
36
+ prompt = question.strip()
37
+ output = self.generator(prompt)[0]["generated_text"]
38
+ # Remove the prompt prefix so only the answer remains
39
+ if output.startswith(prompt):
40
+ answer = output[len(prompt):].strip()
41
+ else:
42
+ answer = output.strip()
43
+ # Take first line if multiple lines
 
 
 
 
 
 
 
 
 
 
44
  answer = answer.split("\n")[0].strip()
45
+ # Optionally strip trailing punctuation
46
+ answer = answer.rstrip(" .,:;!?")
47
+ print("Answer:", answer)
48
  return answer
49
 
50
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
51
+ space_id = os.getenv("SPACE_ID")
52
 
53
+ if not profile:
 
 
 
 
 
 
 
 
 
 
 
 
54
  return "Please Login to Hugging Face with the button.", None
55
+ username = profile.username
56
+ print("User:", username)
57
 
58
  api_url = DEFAULT_API_URL
59
  questions_url = f"{api_url}/questions"
60
  submit_url = f"{api_url}/submit"
61
 
 
62
  try:
63
  agent = BasicAgent()
64
  except Exception as e:
 
65
  return f"Error initializing agent: {e}", None
66
+
67
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
 
68
 
69
+ # Fetch questions
 
70
  try:
71
+ resp = requests.get(questions_url, timeout=15)
72
+ resp.raise_for_status()
73
+ questions_data = resp.json()
 
 
 
 
 
 
 
 
 
 
 
74
  except Exception as e:
75
+ return f"Error fetching questions: {e}", None
 
76
 
 
77
  results_log = []
78
  answers_payload = []
 
79
  for item in questions_data:
80
  task_id = item.get("task_id")
81
  question_text = item.get("question")
82
  if not task_id or question_text is None:
 
83
  continue
84
  try:
85
+ ans = agent(question_text)
86
+ answers_payload.append({"task_id": task_id, "submitted_answer": ans})
87
+ results_log.append({
88
+ "Task ID": task_id,
89
+ "Question": question_text,
90
+ "Submitted Answer": ans
91
+ })
92
  except Exception as e:
93
+ results_log.append({
94
+ "Task ID": task_id,
95
+ "Question": question_text,
96
+ "Submitted Answer": f"ERROR: {e}"
97
+ })
98
 
99
  if not answers_payload:
100
+ return "Agent did not produce any answers.", pd.DataFrame(results_log)
 
101
 
102
+ submission_data = {
103
+ "username": username.strip(),
104
+ "agent_code": agent_code,
105
+ "answers": answers_payload
106
+ }
107
 
 
 
108
  try:
109
+ post_resp = requests.post(submit_url, json=submission_data, timeout=60)
110
+ post_resp.raise_for_status()
111
+ result = post_resp.json()
112
+ status_text = (
113
  f"Submission Successful!\n"
114
+ f"User: {result.get('username')}\n"
115
+ f"Overall Score: {result.get('score', 'N/A')}% "
116
+ f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')} correct)\n"
117
+ f"Message: {result.get('message', '')}"
118
  )
119
+ return status_text, pd.DataFrame(results_log)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
  except Exception as e:
121
+ return f"Submission Failed: {e}", pd.DataFrame(results_log)
 
 
 
122
 
123
+ # --- Gradio Interface ---
 
124
  with gr.Blocks() as demo:
125
+ gr.Markdown("# Agent Evaluation Runner")
126
  gr.Markdown(
127
  """
128
+ 1. Login with Hugging Face
129
+ 2. Click “Run Evaluation & Submit All Answers”
130
+ 3. Wait for score and see your answers
 
 
 
 
 
 
 
131
  """
132
  )
133
 
134
  gr.LoginButton()
 
135
  run_button = gr.Button("Run Evaluation & Submit All Answers")
136
+ status_out = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
 
137
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
138
 
139
+ run_button.click(fn=run_and_submit_all, outputs=[status_out, results_table])
 
 
 
140
 
141
  if __name__ == "__main__":
142
+ demo.launch(debug=True, share=False)