02alexander's picture
copy stuff
9a947d8
raw
history blame
15.8 kB
from typing import Any, Dict, Optional
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.schedulers import KarrasDiffusionSchedulers
import numpy
import torch
import torch.nn as nn
import torch.utils.checkpoint
import torch.distributed
import transformers
from collections import OrderedDict
from PIL import Image
from torchvision import transforms
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
DDPMScheduler,
DiffusionPipeline,
EulerAncestralDiscreteScheduler,
UNet2DConditionModel,
ImagePipelineOutput
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.attention_processor import Attention, AttnProcessor, XFormersAttnProcessor, AttnProcessor2_0
from diffusers.utils.import_utils import is_xformers_available
def to_rgb_image(maybe_rgba: Image.Image):
if maybe_rgba.mode == 'RGB':
return maybe_rgba
elif maybe_rgba.mode == 'RGBA':
rgba = maybe_rgba
img = numpy.random.randint(255, 256, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8)
img = Image.fromarray(img, 'RGB')
img.paste(rgba, mask=rgba.getchannel('A'))
return img
else:
raise ValueError("Unsupported image type.", maybe_rgba.mode)
class ReferenceOnlyAttnProc(torch.nn.Module):
def __init__(
self,
chained_proc,
enabled=False,
name=None
) -> None:
super().__init__()
self.enabled = enabled
self.chained_proc = chained_proc
self.name = name
def __call__(
self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None,
mode="w", ref_dict: dict = None, is_cfg_guidance = False
) -> Any:
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
if self.enabled and is_cfg_guidance:
res0 = self.chained_proc(attn, hidden_states[:1], encoder_hidden_states[:1], attention_mask)
hidden_states = hidden_states[1:]
encoder_hidden_states = encoder_hidden_states[1:]
if self.enabled:
if mode == 'w':
ref_dict[self.name] = encoder_hidden_states
elif mode == 'r':
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1)
elif mode == 'm':
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict[self.name]], dim=1)
else:
assert False, mode
res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask)
if self.enabled and is_cfg_guidance:
res = torch.cat([res0, res])
return res
class RefOnlyNoisedUNet(torch.nn.Module):
def __init__(self, unet: UNet2DConditionModel, train_sched: DDPMScheduler, val_sched: EulerAncestralDiscreteScheduler) -> None:
super().__init__()
self.unet = unet
self.train_sched = train_sched
self.val_sched = val_sched
unet_lora_attn_procs = dict()
for name, _ in unet.attn_processors.items():
if torch.__version__ >= '2.0':
default_attn_proc = AttnProcessor2_0()
elif is_xformers_available():
default_attn_proc = XFormersAttnProcessor()
else:
default_attn_proc = AttnProcessor()
unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(
default_attn_proc, enabled=name.endswith("attn1.processor"), name=name
)
unet.set_attn_processor(unet_lora_attn_procs)
def __getattr__(self, name: str):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.unet, name)
def forward_cond(self, noisy_cond_lat, timestep, encoder_hidden_states, class_labels, ref_dict, is_cfg_guidance, **kwargs):
if is_cfg_guidance:
encoder_hidden_states = encoder_hidden_states[1:]
class_labels = class_labels[1:]
self.unet(
noisy_cond_lat, timestep,
encoder_hidden_states=encoder_hidden_states,
class_labels=class_labels,
cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict),
**kwargs
)
def forward(
self, sample, timestep, encoder_hidden_states, class_labels=None,
*args, cross_attention_kwargs,
down_block_res_samples=None, mid_block_res_sample=None,
**kwargs
):
cond_lat = cross_attention_kwargs['cond_lat']
is_cfg_guidance = cross_attention_kwargs.get('is_cfg_guidance', False)
noise = torch.randn_like(cond_lat)
if self.training:
noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep)
noisy_cond_lat = self.train_sched.scale_model_input(noisy_cond_lat, timestep)
else:
noisy_cond_lat = self.val_sched.add_noise(cond_lat, noise, timestep.reshape(-1))
noisy_cond_lat = self.val_sched.scale_model_input(noisy_cond_lat, timestep.reshape(-1))
ref_dict = {}
self.forward_cond(
noisy_cond_lat, timestep,
encoder_hidden_states, class_labels,
ref_dict, is_cfg_guidance, **kwargs
)
weight_dtype = self.unet.dtype
return self.unet(
sample, timestep,
encoder_hidden_states, *args,
class_labels=class_labels,
cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict, is_cfg_guidance=is_cfg_guidance),
down_block_additional_residuals=[
sample.to(dtype=weight_dtype) for sample in down_block_res_samples
] if down_block_res_samples is not None else None,
mid_block_additional_residual=(
mid_block_res_sample.to(dtype=weight_dtype)
if mid_block_res_sample is not None else None
),
**kwargs
)
def scale_latents(latents):
latents = (latents - 0.22) * 0.75
return latents
def unscale_latents(latents):
latents = latents / 0.75 + 0.22
return latents
def scale_image(image):
image = image * 0.5 / 0.8
return image
def unscale_image(image):
image = image / 0.5 * 0.8
return image
class DepthControlUNet(torch.nn.Module):
def __init__(self, unet: RefOnlyNoisedUNet, controlnet: Optional[diffusers.ControlNetModel] = None, conditioning_scale=1.0) -> None:
super().__init__()
self.unet = unet
if controlnet is None:
self.controlnet = diffusers.ControlNetModel.from_unet(unet.unet)
else:
self.controlnet = controlnet
DefaultAttnProc = AttnProcessor2_0
if is_xformers_available():
DefaultAttnProc = XFormersAttnProcessor
self.controlnet.set_attn_processor(DefaultAttnProc())
self.conditioning_scale = conditioning_scale
def __getattr__(self, name: str):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.unet, name)
def forward(self, sample, timestep, encoder_hidden_states, class_labels=None, *args, cross_attention_kwargs: dict, **kwargs):
cross_attention_kwargs = dict(cross_attention_kwargs)
control_depth = cross_attention_kwargs.pop('control_depth')
down_block_res_samples, mid_block_res_sample = self.controlnet(
sample,
timestep,
encoder_hidden_states=encoder_hidden_states,
controlnet_cond=control_depth,
conditioning_scale=self.conditioning_scale,
return_dict=False,
)
return self.unet(
sample,
timestep,
encoder_hidden_states=encoder_hidden_states,
down_block_res_samples=down_block_res_samples,
mid_block_res_sample=mid_block_res_sample,
cross_attention_kwargs=cross_attention_kwargs
)
class ModuleListDict(torch.nn.Module):
def __init__(self, procs: dict) -> None:
super().__init__()
self.keys = sorted(procs.keys())
self.values = torch.nn.ModuleList(procs[k] for k in self.keys)
def __getitem__(self, key):
return self.values[self.keys.index(key)]
class SuperNet(torch.nn.Module):
def __init__(self, state_dict: Dict[str, torch.Tensor]):
super().__init__()
state_dict = OrderedDict((k, state_dict[k]) for k in sorted(state_dict.keys()))
self.layers = torch.nn.ModuleList(state_dict.values())
self.mapping = dict(enumerate(state_dict.keys()))
self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}
# .processor for unet, .self_attn for text encoder
self.split_keys = [".processor", ".self_attn"]
# we add a hook to state_dict() and load_state_dict() so that the
# naming fits with `unet.attn_processors`
def map_to(module, state_dict, *args, **kwargs):
new_state_dict = {}
for key, value in state_dict.items():
num = int(key.split(".")[1]) # 0 is always "layers"
new_key = key.replace(f"layers.{num}", module.mapping[num])
new_state_dict[new_key] = value
return new_state_dict
def remap_key(key, state_dict):
for k in self.split_keys:
if k in key:
return key.split(k)[0] + k
return key.split('.')[0]
def map_from(module, state_dict, *args, **kwargs):
all_keys = list(state_dict.keys())
for key in all_keys:
replace_key = remap_key(key, state_dict)
new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
state_dict[new_key] = state_dict[key]
del state_dict[key]
self._register_state_dict_hook(map_to)
self._register_load_state_dict_pre_hook(map_from, with_module=True)
class Zero123PlusPipeline(diffusers.StableDiffusionPipeline):
tokenizer: transformers.CLIPTokenizer
text_encoder: transformers.CLIPTextModel
vision_encoder: transformers.CLIPVisionModelWithProjection
feature_extractor_clip: transformers.CLIPImageProcessor
unet: UNet2DConditionModel
scheduler: diffusers.schedulers.KarrasDiffusionSchedulers
vae: AutoencoderKL
ramping: nn.Linear
feature_extractor_vae: transformers.CLIPImageProcessor
depth_transforms_multi = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
vision_encoder: transformers.CLIPVisionModelWithProjection,
feature_extractor_clip: CLIPImageProcessor,
feature_extractor_vae: CLIPImageProcessor,
ramping_coefficients: Optional[list] = None,
safety_checker=None,
):
DiffusionPipeline.__init__(self)
self.register_modules(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer,
unet=unet, scheduler=scheduler, safety_checker=None,
vision_encoder=vision_encoder,
feature_extractor_clip=feature_extractor_clip,
feature_extractor_vae=feature_extractor_vae
)
self.register_to_config(ramping_coefficients=ramping_coefficients)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
def prepare(self):
train_sched = DDPMScheduler.from_config(self.scheduler.config)
if isinstance(self.unet, UNet2DConditionModel):
self.unet = RefOnlyNoisedUNet(self.unet, train_sched, self.scheduler).eval()
def add_controlnet(self, controlnet: Optional[diffusers.ControlNetModel] = None, conditioning_scale=1.0):
self.prepare()
self.unet = DepthControlUNet(self.unet, controlnet, conditioning_scale)
return SuperNet(OrderedDict([('controlnet', self.unet.controlnet)]))
def encode_condition_image(self, image: torch.Tensor):
image = self.vae.encode(image).latent_dist.sample()
return image
@torch.no_grad()
def __call__(
self,
image: Image.Image = None,
prompt = "",
*args,
num_images_per_prompt: Optional[int] = 1,
guidance_scale=4.0,
depth_image: Image.Image = None,
output_type: Optional[str] = "pil",
width=640,
height=960,
num_inference_steps=28,
return_dict=True,
**kwargs
):
self.prepare()
if image is None:
raise ValueError("Inputting embeddings not supported for this pipeline. Please pass an image.")
assert not isinstance(image, torch.Tensor)
image = to_rgb_image(image)
image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values
image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values
if depth_image is not None and hasattr(self.unet, "controlnet"):
depth_image = to_rgb_image(depth_image)
depth_image = self.depth_transforms_multi(depth_image).to(
device=self.unet.controlnet.device, dtype=self.unet.controlnet.dtype
)
image = image_1.to(device=self.vae.device, dtype=self.vae.dtype)
image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype)
cond_lat = self.encode_condition_image(image)
if guidance_scale > 1:
negative_lat = self.encode_condition_image(torch.zeros_like(image))
cond_lat = torch.cat([negative_lat, cond_lat])
encoded = self.vision_encoder(image_2, output_hidden_states=False)
global_embeds = encoded.image_embeds
global_embeds = global_embeds.unsqueeze(-2)
if hasattr(self, "encode_prompt"):
encoder_hidden_states = self.encode_prompt(
prompt,
self.device,
num_images_per_prompt,
False
)[0]
else:
encoder_hidden_states = self._encode_prompt(
prompt,
self.device,
num_images_per_prompt,
False
)
ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1)
encoder_hidden_states = encoder_hidden_states + global_embeds * ramp
cak = dict(cond_lat=cond_lat)
if hasattr(self.unet, "controlnet"):
cak['control_depth'] = depth_image
latents: torch.Tensor = super().__call__(
None,
*args,
cross_attention_kwargs=cak,
guidance_scale=guidance_scale,
num_images_per_prompt=num_images_per_prompt,
prompt_embeds=encoder_hidden_states,
num_inference_steps=num_inference_steps,
output_type='latent',
width=width,
height=height,
**kwargs
).images
latents = unscale_latents(latents)
if not output_type == "latent":
image = unscale_image(self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0])
else:
image = latents
image = self.image_processor.postprocess(image, output_type=output_type)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)