Spaces:
Sleeping
Sleeping
import spaces | |
import os | |
import imageio | |
import numpy as np | |
import torch | |
import rembg | |
from PIL import Image | |
from torchvision.transforms import v2 | |
from pytorch_lightning import seed_everything | |
from omegaconf import OmegaConf | |
from einops import rearrange, repeat | |
from tqdm import tqdm | |
import threading | |
from queue import SimpleQueue | |
from typing import Any | |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler | |
import rerun as rr | |
from gradio_rerun import Rerun | |
import src | |
from src.utils.train_util import instantiate_from_config | |
from src.utils.camera_util import ( | |
FOV_to_intrinsics, | |
get_zero123plus_input_cameras, | |
get_circular_camera_poses, | |
) | |
from src.utils.mesh_util import save_obj, save_glb | |
from src.utils.infer_util import remove_background, resize_foreground, images_to_video | |
from src.models.lrm_mesh import InstantMesh | |
import tempfile | |
from functools import partial | |
from huggingface_hub import hf_hub_download | |
import gradio as gr | |
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False): | |
""" | |
Get the rendering camera parameters. | |
""" | |
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation) | |
if is_flexicubes: | |
cameras = torch.linalg.inv(c2ws) | |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1) | |
else: | |
extrinsics = c2ws.flatten(-2) | |
intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2) | |
cameras = torch.cat([extrinsics, intrinsics], dim=-1) | |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1) | |
return cameras | |
def images_to_video(images, output_path, fps=30): | |
# images: (N, C, H, W) | |
os.makedirs(os.path.dirname(output_path), exist_ok=True) | |
frames = [] | |
for i in range(images.shape[0]): | |
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255) | |
assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ | |
f"Frame shape mismatch: {frame.shape} vs {images.shape}" | |
assert frame.min() >= 0 and frame.max() <= 255, \ | |
f"Frame value out of range: {frame.min()} ~ {frame.max()}" | |
frames.append(frame) | |
imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264') | |
############################################################################### | |
# Configuration. | |
############################################################################### | |
import shutil | |
def find_cuda(): | |
# Check if CUDA_HOME or CUDA_PATH environment variables are set | |
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') | |
if cuda_home and os.path.exists(cuda_home): | |
return cuda_home | |
# Search for the nvcc executable in the system's PATH | |
nvcc_path = shutil.which('nvcc') | |
if nvcc_path: | |
# Remove the 'bin/nvcc' part to get the CUDA installation path | |
cuda_path = os.path.dirname(os.path.dirname(nvcc_path)) | |
return cuda_path | |
return None | |
cuda_path = find_cuda() | |
if cuda_path: | |
print(f"CUDA installation found at: {cuda_path}") | |
else: | |
print("CUDA installation not found") | |
config_path = 'configs/instant-mesh-large.yaml' | |
config = OmegaConf.load(config_path) | |
config_name = os.path.basename(config_path).replace('.yaml', '') | |
model_config = config.model_config | |
infer_config = config.infer_config | |
IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False | |
device = torch.device('cuda') | |
# load diffusion model | |
print('Loading diffusion model ...') | |
pipeline = DiffusionPipeline.from_pretrained( | |
"sudo-ai/zero123plus-v1.2", | |
custom_pipeline="zero123plus", | |
torch_dtype=torch.float16, | |
) | |
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( | |
pipeline.scheduler.config, timestep_spacing='trailing' | |
) | |
# load custom white-background UNet | |
unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model") | |
state_dict = torch.load(unet_ckpt_path, map_location='cpu') | |
pipeline.unet.load_state_dict(state_dict, strict=True) | |
pipeline = pipeline.to(device) | |
print(f'type(pipeline)={type(pipeline)}') | |
# load reconstruction model | |
print('Loading reconstruction model ...') | |
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model") | |
model: InstantMesh = instantiate_from_config(model_config) | |
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict'] | |
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k} | |
model.load_state_dict(state_dict, strict=True) | |
model = model.to(device) | |
print('Loading Finished!') | |
def check_input_image(input_image): | |
if input_image is None: | |
raise gr.Error("No image uploaded!") | |
def preprocess(input_image, do_remove_background): | |
rembg_session = rembg.new_session() if do_remove_background else None | |
if do_remove_background: | |
input_image = remove_background(input_image, rembg_session) | |
input_image = resize_foreground(input_image, 0.85) | |
return input_image | |
def pipeline_callback(output_queue: SimpleQueue, pipe: Any, step_index: int, timestep: float, callback_kwargs: dict[str, Any]) -> dict[str, Any]: | |
rr.set_time_sequence("iteration", step_index) | |
rr.set_time_seconds("timestep", timestep) | |
latents = callback_kwargs["latents"] | |
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0] # type: ignore[attr-defined] | |
image = pipe.image_processor.postprocess(image, output_type="np").squeeze() # type: ignore[attr-defined] | |
output_queue.put(("log", "mvs/image", rr.Image(image))) | |
output_queue.put(("log", "mvs/latents", rr.Tensor(latents.squeeze()))) | |
return callback_kwargs | |
def generate_mvs(output_queue: SimpleQueue, input_image, sample_steps, sample_seed): | |
seed_everything(sample_seed) | |
z123_image = pipeline( | |
input_image, | |
num_inference_steps=sample_steps, | |
callback_on_step_end=lambda *args, **kwargs: pipeline_callback(output_queue, *args, **kwargs), | |
).images[0] | |
output_queue.put(("z123_image", z123_image)) | |
# sampling | |
# z123_image = pipeline( | |
# input_image, | |
# num_inference_steps=sample_steps | |
# ).images[0] | |
# show_image = np.asarray(z123_image, dtype=np.uint8) | |
# show_image = torch.from_numpy(show_image) # (960, 640, 3) | |
# show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2) | |
# show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3) | |
# show_image = Image.fromarray(show_image.numpy()) | |
# return z123_image, show_image | |
def make3d(output_queue: SimpleQueue, images: Image.Image): | |
print(f'type(images)={type(images)}') | |
global model | |
if IS_FLEXICUBES: | |
model.init_flexicubes_geometry(device, use_renderer=False) | |
model = model.eval() | |
images = np.asarray(images, dtype=np.float32) / 255.0 | |
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640) | |
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320) | |
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device) | |
render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device) | |
print(f'type(input_cameras)={type(input_cameras)}') | |
images = images.unsqueeze(0).to(device) | |
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1) | |
print(f'type(images)={type(images)}') | |
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name | |
print(mesh_fpath) | |
mesh_basename = os.path.basename(mesh_fpath).split('.')[0] | |
mesh_dirname = os.path.dirname(mesh_fpath) | |
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4") | |
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb") | |
with torch.no_grad(): | |
# get triplane | |
planes = model.forward_planes(images, input_cameras) | |
print(f'type(planes)={type(planes)}') | |
# # get video | |
chunk_size = 20 if IS_FLEXICUBES else 1 | |
render_size = 384 | |
# frames = [] | |
for i in tqdm(range(0, render_cameras.shape[1], chunk_size)): | |
if IS_FLEXICUBES: | |
frame = model.forward_geometry( | |
planes, | |
render_cameras[:, i:i+chunk_size], | |
render_size=render_size, | |
)['img'] | |
else: | |
frame = model.synthesizer( | |
planes, | |
cameras=render_cameras[:, i:i+chunk_size], | |
render_size=render_size, | |
)['images_rgb'] | |
print(f'type(frame)={type(frame)}') | |
output_queue.put(("log", "3dvideo", rr.Image(frame))) | |
# frames.append(frame) | |
# frames = torch.cat(frames, dim=1) | |
# images_to_video( | |
# frames[0], | |
# video_fpath, | |
# fps=30, | |
# ) | |
# print(f"Video saved to {video_fpath}") | |
# get mesh | |
mesh_out = model.extract_mesh( | |
planes, | |
use_texture_map=False, | |
**infer_config, | |
) | |
print(f'type(mesh_out)={type(mesh_out)}') | |
vertices, faces, vertex_colors = mesh_out | |
vertices = vertices[:, [1, 2, 0]] | |
print(f'type(vertices)={type(vertices)}') | |
print(f'type(faces)={type(faces)}') | |
print(f'type(vertex_colors)={type(vertex_colors)}') | |
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath) | |
save_obj(vertices, faces, vertex_colors, mesh_fpath) | |
print(f"Mesh saved to {mesh_fpath}") | |
return mesh_out | |
def log_to_rr(input_image, do_remove_background, sample_steps, sample_seed): | |
preprocessed_image = preprocess(input_image, do_remove_background) | |
stream = rr.binary_stream() | |
rr.log("preprocessed_image", rr.Image(preprocessed_image)) | |
yield stream.read() | |
output_queue = SimpleQueue() | |
mvs_thread = threading.Thread(target=generate_mvs, args=[output_queue, input_image, sample_steps, sample_seed]) | |
mvs_thread.start() | |
while True: | |
msg = output_queue.get() | |
if msg[0] == "z123_image": | |
z123_image = msg[1] | |
break | |
elif msg[0] == "log": | |
entity_path = msg[1] | |
entity = msg[2] | |
rr.log(entity_path, entity) | |
yield stream.read() | |
mvs_thread.join() | |
rr.log("z123image", rr.Image(z123_image)) | |
yield stream.read() | |
# mesh_fpath, mesh_glb_fpath = make3d(output_queue, z123_image) | |
# while not output_queue.empty(): | |
# msg = output_queue.get() | |
# if msg[0] == "log": | |
# entity_path = msg[1] | |
# entity = msg[2] | |
# rr.log(entity_path, entity) | |
# yield stream.read() | |
_HEADER_ = ''' | |
<h2><b>Official π€ Gradio Demo</b></h2><h2><a href='https://github.com/TencentARC/InstantMesh' target='_blank'><b>InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models</b></a></h2> | |
**InstantMesh** is a feed-forward framework for efficient 3D mesh generation from a single image based on the LRM/Instant3D architecture. | |
Code: <a href='https://github.com/TencentARC/InstantMesh' target='_blank'>GitHub</a>. Techenical report: <a href='https://arxiv.org/abs/2404.07191' target='_blank'>ArXiv</a>. | |
βοΈβοΈβοΈ**Important Notes:** | |
- Our demo can export a .obj mesh with vertex colors or a .glb mesh now. If you prefer to export a .obj mesh with a **texture map**, please refer to our <a href='https://github.com/TencentARC/InstantMesh?tab=readme-ov-file#running-with-command-line' target='_blank'>Github Repo</a>. | |
- The 3D mesh generation results highly depend on the quality of generated multi-view images. Please try a different **seed value** if the result is unsatisfying (Default: 42). | |
''' | |
_CITE_ = r""" | |
If InstantMesh is helpful, please help to β the <a href='https://github.com/TencentARC/InstantMesh' target='_blank'>Github Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/InstantMesh?style=social)](https://github.com/TencentARC/InstantMesh) | |
--- | |
π **Citation** | |
If you find our work useful for your research or applications, please cite using this bibtex: | |
```bibtex | |
@article{xu2024instantmesh, | |
title={InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models}, | |
author={Xu, Jiale and Cheng, Weihao and Gao, Yiming and Wang, Xintao and Gao, Shenghua and Shan, Ying}, | |
journal={arXiv preprint arXiv:2404.07191}, | |
year={2024} | |
} | |
``` | |
π **License** | |
Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/spaces/TencentARC/InstantMesh/blob/main/LICENSE) for details. | |
π§ **Contact** | |
If you have any questions, feel free to open a discussion or contact us at <b>bluestyle928@gmail.com</b>. | |
""" | |
with gr.Blocks() as demo: | |
gr.Markdown(_HEADER_) | |
with gr.Row(variant="panel"): | |
with gr.Column(): | |
with gr.Row(): | |
input_image = gr.Image( | |
label="Input Image", | |
image_mode="RGBA", | |
sources="upload", | |
#width=256, | |
#height=256, | |
type="pil", | |
elem_id="content_image", | |
) | |
with gr.Row(): | |
with gr.Group(): | |
do_remove_background = gr.Checkbox( | |
label="Remove Background", value=True | |
) | |
sample_seed = gr.Number(value=42, label="Seed Value", precision=0) | |
sample_steps = gr.Slider( | |
label="Sample Steps", | |
minimum=30, | |
maximum=75, | |
value=75, | |
step=5 | |
) | |
with gr.Row(): | |
submit = gr.Button("Generate", elem_id="generate", variant="primary") | |
with gr.Row(variant="panel"): | |
gr.Examples( | |
examples=[ | |
os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples")) | |
], | |
inputs=[input_image], | |
label="Examples", | |
cache_examples=False, | |
examples_per_page=16 | |
) | |
with gr.Column(): | |
viewer = Rerun(streaming=True, height=800) | |
# with gr.Row(): | |
# with gr.Column(): | |
# mv_show_images = gr.Image( | |
# label="Generated Multi-views", | |
# type="pil", | |
# width=379, | |
# interactive=False | |
# ) | |
# with gr.Row(): | |
# with gr.Tab("OBJ"): | |
# output_model_obj = gr.Model3D( | |
# label="Output Model (OBJ Format)", | |
# interactive=False, | |
# ) | |
# gr.Markdown("Note: Downloaded .obj model will be flipped. Export .glb instead or manually flip it before usage.") | |
# with gr.Tab("GLB"): | |
# output_model_glb = gr.Model3D( | |
# label="Output Model (GLB Format)", | |
# interactive=False, | |
# ) | |
# gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.") | |
with gr.Row(): | |
gr.Markdown('''Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).''') | |
gr.Markdown(_CITE_) | |
mv_images = gr.State() | |
submit.click(fn=check_input_image, inputs=[input_image]).success( | |
fn=log_to_rr, | |
inputs=[input_image, do_remove_background, sample_steps, sample_seed], | |
outputs=[viewer] | |
) | |
# submit.click(fn=check_input_image, inputs=[input_image]).success( | |
# fn=preprocess, | |
# inputs=[input_image, do_remove_background], | |
# outputs=[processed_image], | |
# ).success( | |
# fn=generate_mvs, | |
# inputs=[processed_image, sample_steps, sample_seed], | |
# outputs=[mv_images, mv_show_images] | |
# ).success( | |
# fn=make3d, | |
# inputs=[mv_images], | |
# outputs=[output_model_obj, output_model_glb] | |
# ) | |
demo.launch() |