|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from .ncsnpp_utils import layers, layerspp, normalization |
|
import torch.nn as nn |
|
import functools |
|
import torch |
|
import numpy as np |
|
|
|
from .shared import BackboneRegistry |
|
|
|
ResnetBlockDDPM = layerspp.ResnetBlockDDPMpp |
|
ResnetBlockBigGAN = layerspp.ResnetBlockBigGANpp |
|
Combine = layerspp.Combine |
|
conv3x3 = layerspp.conv3x3 |
|
conv1x1 = layerspp.conv1x1 |
|
get_act = layers.get_act |
|
get_normalization = normalization.get_normalization |
|
default_initializer = layers.default_init |
|
|
|
|
|
@BackboneRegistry.register("ncsnpp_48k") |
|
class NCSNpp_48k(nn.Module): |
|
"""NCSN++ model, adapted from https://github.com/yang-song/score_sde repository""" |
|
|
|
@staticmethod |
|
def add_argparse_args(parser): |
|
parser.add_argument("--ch_mult",type=int, nargs='+', default=[1,1,2,2,2,2,2]) |
|
parser.add_argument("--num_res_blocks", type=int, default=2) |
|
parser.add_argument("--attn_resolutions", type=int, nargs='+', default=[]) |
|
parser.add_argument("--nf", type=int, default=128, help="Number of channels to use in the model") |
|
parser.add_argument("--no-centered", dest="centered", action="store_false", help="The data is not centered [-1, 1]") |
|
parser.add_argument("--centered", dest="centered", action="store_true", help="The data is centered [-1, 1]") |
|
parser.add_argument("--progressive", type=str, default='none', help="Progressive downsampling method") |
|
parser.add_argument("--progressive_input", type=str, default='none', help="Progressive upsampling method") |
|
parser.set_defaults(centered=True) |
|
return parser |
|
|
|
def __init__(self, |
|
scale_by_sigma = True, |
|
nonlinearity = 'swish', |
|
nf = 128, |
|
ch_mult = (1, 1, 2, 2, 2, 2, 2), |
|
num_res_blocks = 2, |
|
attn_resolutions = (), |
|
resamp_with_conv = True, |
|
conditional = True, |
|
fir = True, |
|
fir_kernel = [1, 3, 3, 1], |
|
skip_rescale = True, |
|
resblock_type = 'biggan', |
|
progressive = 'none', |
|
progressive_input = 'none', |
|
progressive_combine = 'sum', |
|
init_scale = 0., |
|
fourier_scale = 16, |
|
image_size = 256, |
|
embedding_type = 'fourier', |
|
dropout = .0, |
|
centered = True, |
|
**unused_kwargs |
|
): |
|
super().__init__() |
|
self.act = act = get_act(nonlinearity) |
|
|
|
self.nf = nf = nf |
|
ch_mult = ch_mult |
|
self.num_res_blocks = num_res_blocks = num_res_blocks |
|
self.attn_resolutions = attn_resolutions |
|
dropout = dropout |
|
resamp_with_conv = resamp_with_conv |
|
self.num_resolutions = num_resolutions = len(ch_mult) |
|
self.all_resolutions = all_resolutions = [image_size // (2 ** i) for i in range(num_resolutions)] |
|
|
|
self.conditional = conditional = conditional |
|
self.centered = centered |
|
self.scale_by_sigma = scale_by_sigma |
|
|
|
fir = fir |
|
fir_kernel = fir_kernel |
|
self.skip_rescale = skip_rescale = skip_rescale |
|
self.resblock_type = resblock_type = resblock_type.lower() |
|
self.progressive = progressive = progressive.lower() |
|
self.progressive_input = progressive_input = progressive_input.lower() |
|
self.embedding_type = embedding_type = embedding_type.lower() |
|
init_scale = init_scale |
|
assert progressive in ['none', 'output_skip', 'residual'] |
|
assert progressive_input in ['none', 'input_skip', 'residual'] |
|
assert embedding_type in ['fourier', 'positional'] |
|
combine_method = progressive_combine.lower() |
|
combiner = functools.partial(Combine, method=combine_method) |
|
|
|
num_channels = 4 |
|
self.output_layer = nn.Conv2d(num_channels, 2, 1) |
|
|
|
modules = [] |
|
|
|
if embedding_type == 'fourier': |
|
|
|
modules.append(layerspp.GaussianFourierProjection( |
|
embedding_size=nf, scale=fourier_scale |
|
)) |
|
embed_dim = 2 * nf |
|
elif embedding_type == 'positional': |
|
embed_dim = nf |
|
else: |
|
raise ValueError(f'embedding type {embedding_type} unknown.') |
|
|
|
if conditional: |
|
modules.append(nn.Linear(embed_dim, nf * 4)) |
|
modules[-1].weight.data = default_initializer()(modules[-1].weight.shape) |
|
nn.init.zeros_(modules[-1].bias) |
|
modules.append(nn.Linear(nf * 4, nf * 4)) |
|
modules[-1].weight.data = default_initializer()(modules[-1].weight.shape) |
|
nn.init.zeros_(modules[-1].bias) |
|
|
|
AttnBlock = functools.partial(layerspp.AttnBlockpp, |
|
init_scale=init_scale, skip_rescale=skip_rescale) |
|
|
|
Upsample = functools.partial(layerspp.Upsample, |
|
with_conv=resamp_with_conv, fir=fir, fir_kernel=fir_kernel) |
|
|
|
if progressive == 'output_skip': |
|
self.pyramid_upsample = layerspp.Upsample(fir=fir, fir_kernel=fir_kernel, with_conv=False) |
|
elif progressive == 'residual': |
|
pyramid_upsample = functools.partial(layerspp.Upsample, fir=fir, |
|
fir_kernel=fir_kernel, with_conv=True) |
|
|
|
Downsample = functools.partial(layerspp.Downsample, with_conv=resamp_with_conv, fir=fir, fir_kernel=fir_kernel) |
|
|
|
if progressive_input == 'input_skip': |
|
self.pyramid_downsample = layerspp.Downsample(fir=fir, fir_kernel=fir_kernel, with_conv=False) |
|
elif progressive_input == 'residual': |
|
pyramid_downsample = functools.partial(layerspp.Downsample, |
|
fir=fir, fir_kernel=fir_kernel, with_conv=True) |
|
|
|
if resblock_type == 'ddpm': |
|
ResnetBlock = functools.partial(ResnetBlockDDPM, act=act, |
|
dropout=dropout, init_scale=init_scale, |
|
skip_rescale=skip_rescale, temb_dim=nf * 4) |
|
|
|
elif resblock_type == 'biggan': |
|
ResnetBlock = functools.partial(ResnetBlockBigGAN, act=act, |
|
dropout=dropout, fir=fir, fir_kernel=fir_kernel, |
|
init_scale=init_scale, skip_rescale=skip_rescale, temb_dim=nf * 4) |
|
|
|
else: |
|
raise ValueError(f'resblock type {resblock_type} unrecognized.') |
|
|
|
|
|
|
|
channels = num_channels |
|
if progressive_input != 'none': |
|
input_pyramid_ch = channels |
|
|
|
modules.append(conv3x3(channels, nf)) |
|
hs_c = [nf] |
|
|
|
in_ch = nf |
|
for i_level in range(num_resolutions): |
|
|
|
for i_block in range(num_res_blocks): |
|
out_ch = nf * ch_mult[i_level] |
|
modules.append(ResnetBlock(in_ch=in_ch, out_ch=out_ch)) |
|
in_ch = out_ch |
|
|
|
if all_resolutions[i_level] in attn_resolutions: |
|
modules.append(AttnBlock(channels=in_ch)) |
|
hs_c.append(in_ch) |
|
|
|
if i_level != num_resolutions - 1: |
|
if resblock_type == 'ddpm': |
|
modules.append(Downsample(in_ch=in_ch)) |
|
else: |
|
modules.append(ResnetBlock(down=True, in_ch=in_ch)) |
|
|
|
if progressive_input == 'input_skip': |
|
modules.append(combiner(dim1=input_pyramid_ch, dim2=in_ch)) |
|
if combine_method == 'cat': |
|
in_ch *= 2 |
|
|
|
elif progressive_input == 'residual': |
|
modules.append(pyramid_downsample(in_ch=input_pyramid_ch, out_ch=in_ch)) |
|
input_pyramid_ch = in_ch |
|
|
|
hs_c.append(in_ch) |
|
|
|
in_ch = hs_c[-1] |
|
modules.append(ResnetBlock(in_ch=in_ch)) |
|
modules.append(AttnBlock(channels=in_ch)) |
|
modules.append(ResnetBlock(in_ch=in_ch)) |
|
|
|
pyramid_ch = 0 |
|
|
|
for i_level in reversed(range(num_resolutions)): |
|
for i_block in range(num_res_blocks + 1): |
|
out_ch = nf * ch_mult[i_level] |
|
modules.append(ResnetBlock(in_ch=in_ch + hs_c.pop(), out_ch=out_ch)) |
|
in_ch = out_ch |
|
|
|
if all_resolutions[i_level] in attn_resolutions: |
|
modules.append(AttnBlock(channels=in_ch)) |
|
|
|
if progressive != 'none': |
|
if i_level == num_resolutions - 1: |
|
if progressive == 'output_skip': |
|
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32), |
|
num_channels=in_ch, eps=1e-6)) |
|
modules.append(conv3x3(in_ch, channels, init_scale=init_scale)) |
|
pyramid_ch = channels |
|
elif progressive == 'residual': |
|
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)) |
|
modules.append(conv3x3(in_ch, in_ch, bias=True)) |
|
pyramid_ch = in_ch |
|
else: |
|
raise ValueError(f'{progressive} is not a valid name.') |
|
else: |
|
if progressive == 'output_skip': |
|
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32), |
|
num_channels=in_ch, eps=1e-6)) |
|
modules.append(conv3x3(in_ch, channels, bias=True, init_scale=init_scale)) |
|
pyramid_ch = channels |
|
elif progressive == 'residual': |
|
modules.append(pyramid_upsample(in_ch=pyramid_ch, out_ch=in_ch)) |
|
pyramid_ch = in_ch |
|
else: |
|
raise ValueError(f'{progressive} is not a valid name') |
|
|
|
if i_level != 0: |
|
if resblock_type == 'ddpm': |
|
modules.append(Upsample(in_ch=in_ch)) |
|
else: |
|
modules.append(ResnetBlock(in_ch=in_ch, up=True)) |
|
|
|
assert not hs_c |
|
|
|
if progressive != 'output_skip': |
|
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32), |
|
num_channels=in_ch, eps=1e-6)) |
|
modules.append(conv3x3(in_ch, channels, init_scale=init_scale)) |
|
|
|
self.all_modules = nn.ModuleList(modules) |
|
|
|
|
|
def forward(self, x, time_cond): |
|
|
|
modules = self.all_modules |
|
m_idx = 0 |
|
|
|
|
|
x = torch.cat((x[:,[0],:,:].real, x[:,[0],:,:].imag, |
|
x[:,[1],:,:].real, x[:,[1],:,:].imag), dim=1) |
|
|
|
if self.embedding_type == 'fourier': |
|
|
|
used_sigmas = time_cond |
|
temb = modules[m_idx](torch.log(used_sigmas)) |
|
m_idx += 1 |
|
|
|
elif self.embedding_type == 'positional': |
|
|
|
timesteps = time_cond |
|
used_sigmas = self.sigmas[time_cond.long()] |
|
temb = layers.get_timestep_embedding(timesteps, self.nf) |
|
|
|
else: |
|
raise ValueError(f'embedding type {self.embedding_type} unknown.') |
|
|
|
if self.conditional: |
|
temb = modules[m_idx](temb) |
|
m_idx += 1 |
|
temb = modules[m_idx](self.act(temb)) |
|
m_idx += 1 |
|
else: |
|
temb = None |
|
|
|
if not self.centered: |
|
|
|
x = 2 * x - 1. |
|
|
|
|
|
input_pyramid = None |
|
if self.progressive_input != 'none': |
|
input_pyramid = x |
|
|
|
|
|
hs = [modules[m_idx](x)] |
|
m_idx += 1 |
|
|
|
|
|
for i_level in range(self.num_resolutions): |
|
|
|
for i_block in range(self.num_res_blocks): |
|
h = modules[m_idx](hs[-1], temb) |
|
m_idx += 1 |
|
|
|
if h.shape[-2] in self.attn_resolutions: |
|
h = modules[m_idx](h) |
|
m_idx += 1 |
|
hs.append(h) |
|
|
|
|
|
if i_level != self.num_resolutions - 1: |
|
if self.resblock_type == 'ddpm': |
|
h = modules[m_idx](hs[-1]) |
|
m_idx += 1 |
|
else: |
|
h = modules[m_idx](hs[-1], temb) |
|
m_idx += 1 |
|
|
|
if self.progressive_input == 'input_skip': |
|
input_pyramid = self.pyramid_downsample(input_pyramid) |
|
h = modules[m_idx](input_pyramid, h) |
|
m_idx += 1 |
|
|
|
elif self.progressive_input == 'residual': |
|
input_pyramid = modules[m_idx](input_pyramid) |
|
m_idx += 1 |
|
if self.skip_rescale: |
|
input_pyramid = (input_pyramid + h) / np.sqrt(2.) |
|
else: |
|
input_pyramid = input_pyramid + h |
|
h = input_pyramid |
|
hs.append(h) |
|
|
|
h = hs[-1] |
|
h = modules[m_idx](h, temb) |
|
m_idx += 1 |
|
h = modules[m_idx](h) |
|
m_idx += 1 |
|
h = modules[m_idx](h, temb) |
|
m_idx += 1 |
|
|
|
pyramid = None |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks + 1): |
|
h = modules[m_idx](torch.cat([h, hs.pop()], dim=1), temb) |
|
m_idx += 1 |
|
|
|
|
|
if h.shape[-2] in self.attn_resolutions: |
|
h = modules[m_idx](h) |
|
m_idx += 1 |
|
|
|
if self.progressive != 'none': |
|
if i_level == self.num_resolutions - 1: |
|
if self.progressive == 'output_skip': |
|
pyramid = self.act(modules[m_idx](h)) |
|
m_idx += 1 |
|
pyramid = modules[m_idx](pyramid) |
|
m_idx += 1 |
|
elif self.progressive == 'residual': |
|
pyramid = self.act(modules[m_idx](h)) |
|
m_idx += 1 |
|
pyramid = modules[m_idx](pyramid) |
|
m_idx += 1 |
|
else: |
|
raise ValueError(f'{self.progressive} is not a valid name.') |
|
else: |
|
if self.progressive == 'output_skip': |
|
pyramid = self.pyramid_upsample(pyramid) |
|
pyramid_h = self.act(modules[m_idx](h)) |
|
m_idx += 1 |
|
pyramid_h = modules[m_idx](pyramid_h) |
|
m_idx += 1 |
|
pyramid = pyramid + pyramid_h |
|
elif self.progressive == 'residual': |
|
pyramid = modules[m_idx](pyramid) |
|
m_idx += 1 |
|
if self.skip_rescale: |
|
pyramid = (pyramid + h) / np.sqrt(2.) |
|
else: |
|
pyramid = pyramid + h |
|
h = pyramid |
|
else: |
|
raise ValueError(f'{self.progressive} is not a valid name') |
|
|
|
|
|
if i_level != 0: |
|
if self.resblock_type == 'ddpm': |
|
h = modules[m_idx](h) |
|
m_idx += 1 |
|
else: |
|
h = modules[m_idx](h, temb) |
|
m_idx += 1 |
|
|
|
assert not hs |
|
|
|
if self.progressive == 'output_skip': |
|
h = pyramid |
|
else: |
|
h = self.act(modules[m_idx](h)) |
|
m_idx += 1 |
|
h = modules[m_idx](h) |
|
m_idx += 1 |
|
|
|
assert m_idx == len(modules), "Implementation error" |
|
|
|
|
|
h = self.output_layer(h) |
|
|
|
if self.scale_by_sigma: |
|
used_sigmas = used_sigmas.reshape((x.shape[0], *([1] * len(x.shape[1:])))) |
|
h = h / used_sigmas |
|
|
|
h = torch.permute(h, (0, 2, 3, 1)).contiguous() |
|
h = torch.view_as_complex(h)[:,None, :, :] |
|
return h |
|
|