Shokoufehhh's picture
Upload 40 files
05b4fca verified
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: skip-file
from .ncsnpp_utils import layers, layerspp, normalization
import torch.nn as nn
import functools
import torch
import numpy as np
from .shared import BackboneRegistry
ResnetBlockDDPM = layerspp.ResnetBlockDDPMpp
ResnetBlockBigGAN = layerspp.ResnetBlockBigGANpp
Combine = layerspp.Combine
conv3x3 = layerspp.conv3x3
conv1x1 = layerspp.conv1x1
get_act = layers.get_act
get_normalization = normalization.get_normalization
default_initializer = layers.default_init
@BackboneRegistry.register("ncsnpp_48k")
class NCSNpp_48k(nn.Module):
"""NCSN++ model, adapted from https://github.com/yang-song/score_sde repository"""
@staticmethod
def add_argparse_args(parser):
parser.add_argument("--ch_mult",type=int, nargs='+', default=[1,1,2,2,2,2,2])
parser.add_argument("--num_res_blocks", type=int, default=2)
parser.add_argument("--attn_resolutions", type=int, nargs='+', default=[])
parser.add_argument("--nf", type=int, default=128, help="Number of channels to use in the model")
parser.add_argument("--no-centered", dest="centered", action="store_false", help="The data is not centered [-1, 1]")
parser.add_argument("--centered", dest="centered", action="store_true", help="The data is centered [-1, 1]")
parser.add_argument("--progressive", type=str, default='none', help="Progressive downsampling method")
parser.add_argument("--progressive_input", type=str, default='none', help="Progressive upsampling method")
parser.set_defaults(centered=True)
return parser
def __init__(self,
scale_by_sigma = True,
nonlinearity = 'swish',
nf = 128,
ch_mult = (1, 1, 2, 2, 2, 2, 2),
num_res_blocks = 2,
attn_resolutions = (),
resamp_with_conv = True,
conditional = True,
fir = True,
fir_kernel = [1, 3, 3, 1],
skip_rescale = True,
resblock_type = 'biggan',
progressive = 'none',
progressive_input = 'none',
progressive_combine = 'sum',
init_scale = 0.,
fourier_scale = 16,
image_size = 256,
embedding_type = 'fourier',
dropout = .0,
centered = True,
**unused_kwargs
):
super().__init__()
self.act = act = get_act(nonlinearity)
self.nf = nf = nf
ch_mult = ch_mult
self.num_res_blocks = num_res_blocks = num_res_blocks
self.attn_resolutions = attn_resolutions
dropout = dropout
resamp_with_conv = resamp_with_conv
self.num_resolutions = num_resolutions = len(ch_mult)
self.all_resolutions = all_resolutions = [image_size // (2 ** i) for i in range(num_resolutions)]
self.conditional = conditional = conditional # noise-conditional
self.centered = centered
self.scale_by_sigma = scale_by_sigma
fir = fir
fir_kernel = fir_kernel
self.skip_rescale = skip_rescale = skip_rescale
self.resblock_type = resblock_type = resblock_type.lower()
self.progressive = progressive = progressive.lower()
self.progressive_input = progressive_input = progressive_input.lower()
self.embedding_type = embedding_type = embedding_type.lower()
init_scale = init_scale
assert progressive in ['none', 'output_skip', 'residual']
assert progressive_input in ['none', 'input_skip', 'residual']
assert embedding_type in ['fourier', 'positional']
combine_method = progressive_combine.lower()
combiner = functools.partial(Combine, method=combine_method)
num_channels = 4 # x.real, x.imag, y.real, y.imag
self.output_layer = nn.Conv2d(num_channels, 2, 1)
modules = []
# timestep/noise_level embedding
if embedding_type == 'fourier':
# Gaussian Fourier features embeddings.
modules.append(layerspp.GaussianFourierProjection(
embedding_size=nf, scale=fourier_scale
))
embed_dim = 2 * nf
elif embedding_type == 'positional':
embed_dim = nf
else:
raise ValueError(f'embedding type {embedding_type} unknown.')
if conditional:
modules.append(nn.Linear(embed_dim, nf * 4))
modules[-1].weight.data = default_initializer()(modules[-1].weight.shape)
nn.init.zeros_(modules[-1].bias)
modules.append(nn.Linear(nf * 4, nf * 4))
modules[-1].weight.data = default_initializer()(modules[-1].weight.shape)
nn.init.zeros_(modules[-1].bias)
AttnBlock = functools.partial(layerspp.AttnBlockpp,
init_scale=init_scale, skip_rescale=skip_rescale)
Upsample = functools.partial(layerspp.Upsample,
with_conv=resamp_with_conv, fir=fir, fir_kernel=fir_kernel)
if progressive == 'output_skip':
self.pyramid_upsample = layerspp.Upsample(fir=fir, fir_kernel=fir_kernel, with_conv=False)
elif progressive == 'residual':
pyramid_upsample = functools.partial(layerspp.Upsample, fir=fir,
fir_kernel=fir_kernel, with_conv=True)
Downsample = functools.partial(layerspp.Downsample, with_conv=resamp_with_conv, fir=fir, fir_kernel=fir_kernel)
if progressive_input == 'input_skip':
self.pyramid_downsample = layerspp.Downsample(fir=fir, fir_kernel=fir_kernel, with_conv=False)
elif progressive_input == 'residual':
pyramid_downsample = functools.partial(layerspp.Downsample,
fir=fir, fir_kernel=fir_kernel, with_conv=True)
if resblock_type == 'ddpm':
ResnetBlock = functools.partial(ResnetBlockDDPM, act=act,
dropout=dropout, init_scale=init_scale,
skip_rescale=skip_rescale, temb_dim=nf * 4)
elif resblock_type == 'biggan':
ResnetBlock = functools.partial(ResnetBlockBigGAN, act=act,
dropout=dropout, fir=fir, fir_kernel=fir_kernel,
init_scale=init_scale, skip_rescale=skip_rescale, temb_dim=nf * 4)
else:
raise ValueError(f'resblock type {resblock_type} unrecognized.')
# Downsampling block
channels = num_channels
if progressive_input != 'none':
input_pyramid_ch = channels
modules.append(conv3x3(channels, nf))
hs_c = [nf]
in_ch = nf
for i_level in range(num_resolutions):
# Residual blocks for this resolution
for i_block in range(num_res_blocks):
out_ch = nf * ch_mult[i_level]
modules.append(ResnetBlock(in_ch=in_ch, out_ch=out_ch))
in_ch = out_ch
if all_resolutions[i_level] in attn_resolutions:
modules.append(AttnBlock(channels=in_ch))
hs_c.append(in_ch)
if i_level != num_resolutions - 1:
if resblock_type == 'ddpm':
modules.append(Downsample(in_ch=in_ch))
else:
modules.append(ResnetBlock(down=True, in_ch=in_ch))
if progressive_input == 'input_skip':
modules.append(combiner(dim1=input_pyramid_ch, dim2=in_ch))
if combine_method == 'cat':
in_ch *= 2
elif progressive_input == 'residual':
modules.append(pyramid_downsample(in_ch=input_pyramid_ch, out_ch=in_ch))
input_pyramid_ch = in_ch
hs_c.append(in_ch)
in_ch = hs_c[-1]
modules.append(ResnetBlock(in_ch=in_ch))
modules.append(AttnBlock(channels=in_ch))
modules.append(ResnetBlock(in_ch=in_ch))
pyramid_ch = 0
# Upsampling block
for i_level in reversed(range(num_resolutions)):
for i_block in range(num_res_blocks + 1): # +1 blocks in upsampling because of skip connection from combiner (after downsampling)
out_ch = nf * ch_mult[i_level]
modules.append(ResnetBlock(in_ch=in_ch + hs_c.pop(), out_ch=out_ch))
in_ch = out_ch
if all_resolutions[i_level] in attn_resolutions:
modules.append(AttnBlock(channels=in_ch))
if progressive != 'none':
if i_level == num_resolutions - 1:
if progressive == 'output_skip':
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32),
num_channels=in_ch, eps=1e-6))
modules.append(conv3x3(in_ch, channels, init_scale=init_scale))
pyramid_ch = channels
elif progressive == 'residual':
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6))
modules.append(conv3x3(in_ch, in_ch, bias=True))
pyramid_ch = in_ch
else:
raise ValueError(f'{progressive} is not a valid name.')
else:
if progressive == 'output_skip':
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32),
num_channels=in_ch, eps=1e-6))
modules.append(conv3x3(in_ch, channels, bias=True, init_scale=init_scale))
pyramid_ch = channels
elif progressive == 'residual':
modules.append(pyramid_upsample(in_ch=pyramid_ch, out_ch=in_ch))
pyramid_ch = in_ch
else:
raise ValueError(f'{progressive} is not a valid name')
if i_level != 0:
if resblock_type == 'ddpm':
modules.append(Upsample(in_ch=in_ch))
else:
modules.append(ResnetBlock(in_ch=in_ch, up=True))
assert not hs_c
if progressive != 'output_skip':
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32),
num_channels=in_ch, eps=1e-6))
modules.append(conv3x3(in_ch, channels, init_scale=init_scale))
self.all_modules = nn.ModuleList(modules)
def forward(self, x, time_cond):
# timestep/noise_level embedding; only for continuous training
modules = self.all_modules
m_idx = 0
# Convert real and imaginary parts of (x,y) into four channel dimensions
x = torch.cat((x[:,[0],:,:].real, x[:,[0],:,:].imag,
x[:,[1],:,:].real, x[:,[1],:,:].imag), dim=1)
if self.embedding_type == 'fourier':
# Gaussian Fourier features embeddings.
used_sigmas = time_cond
temb = modules[m_idx](torch.log(used_sigmas))
m_idx += 1
elif self.embedding_type == 'positional':
# Sinusoidal positional embeddings.
timesteps = time_cond
used_sigmas = self.sigmas[time_cond.long()]
temb = layers.get_timestep_embedding(timesteps, self.nf)
else:
raise ValueError(f'embedding type {self.embedding_type} unknown.')
if self.conditional:
temb = modules[m_idx](temb)
m_idx += 1
temb = modules[m_idx](self.act(temb))
m_idx += 1
else:
temb = None
if not self.centered:
# If input data is in [0, 1]
x = 2 * x - 1.
# Downsampling block
input_pyramid = None
if self.progressive_input != 'none':
input_pyramid = x
# Input layer: Conv2d: 4ch -> 128ch
hs = [modules[m_idx](x)]
m_idx += 1
# Down path in U-Net
for i_level in range(self.num_resolutions):
# Residual blocks for this resolution
for i_block in range(self.num_res_blocks):
h = modules[m_idx](hs[-1], temb)
m_idx += 1
# Attention layer (optional)
if h.shape[-2] in self.attn_resolutions: # edit: check H dim (-2) not W dim (-1)
h = modules[m_idx](h)
m_idx += 1
hs.append(h)
# Downsampling
if i_level != self.num_resolutions - 1:
if self.resblock_type == 'ddpm':
h = modules[m_idx](hs[-1])
m_idx += 1
else:
h = modules[m_idx](hs[-1], temb)
m_idx += 1
if self.progressive_input == 'input_skip': # Combine h with x
input_pyramid = self.pyramid_downsample(input_pyramid)
h = modules[m_idx](input_pyramid, h)
m_idx += 1
elif self.progressive_input == 'residual':
input_pyramid = modules[m_idx](input_pyramid)
m_idx += 1
if self.skip_rescale:
input_pyramid = (input_pyramid + h) / np.sqrt(2.)
else:
input_pyramid = input_pyramid + h
h = input_pyramid
hs.append(h)
h = hs[-1] # actualy equal to: h = h
h = modules[m_idx](h, temb) # ResNet block
m_idx += 1
h = modules[m_idx](h) # Attention block
m_idx += 1
h = modules[m_idx](h, temb) # ResNet block
m_idx += 1
pyramid = None
# Upsampling block
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = modules[m_idx](torch.cat([h, hs.pop()], dim=1), temb)
m_idx += 1
# edit: from -1 to -2
if h.shape[-2] in self.attn_resolutions:
h = modules[m_idx](h)
m_idx += 1
if self.progressive != 'none':
if i_level == self.num_resolutions - 1:
if self.progressive == 'output_skip':
pyramid = self.act(modules[m_idx](h)) # GroupNorm
m_idx += 1
pyramid = modules[m_idx](pyramid) # Conv2D: 256 -> 4
m_idx += 1
elif self.progressive == 'residual':
pyramid = self.act(modules[m_idx](h))
m_idx += 1
pyramid = modules[m_idx](pyramid)
m_idx += 1
else:
raise ValueError(f'{self.progressive} is not a valid name.')
else:
if self.progressive == 'output_skip':
pyramid = self.pyramid_upsample(pyramid) # Upsample
pyramid_h = self.act(modules[m_idx](h)) # GroupNorm
m_idx += 1
pyramid_h = modules[m_idx](pyramid_h)
m_idx += 1
pyramid = pyramid + pyramid_h
elif self.progressive == 'residual':
pyramid = modules[m_idx](pyramid)
m_idx += 1
if self.skip_rescale:
pyramid = (pyramid + h) / np.sqrt(2.)
else:
pyramid = pyramid + h
h = pyramid
else:
raise ValueError(f'{self.progressive} is not a valid name')
# Upsampling Layer
if i_level != 0:
if self.resblock_type == 'ddpm':
h = modules[m_idx](h)
m_idx += 1
else:
h = modules[m_idx](h, temb) # Upspampling
m_idx += 1
assert not hs
if self.progressive == 'output_skip':
h = pyramid
else:
h = self.act(modules[m_idx](h))
m_idx += 1
h = modules[m_idx](h)
m_idx += 1
assert m_idx == len(modules), "Implementation error"
# Convert back to complex number
h = self.output_layer(h)
if self.scale_by_sigma:
used_sigmas = used_sigmas.reshape((x.shape[0], *([1] * len(x.shape[1:]))))
h = h / used_sigmas
h = torch.permute(h, (0, 2, 3, 1)).contiguous()
h = torch.view_as_complex(h)[:,None, :, :]
return h