|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Normalization layers.""" |
|
import torch.nn as nn |
|
import torch |
|
import functools |
|
|
|
|
|
def get_normalization(config, conditional=False): |
|
"""Obtain normalization modules from the config file.""" |
|
norm = config.model.normalization |
|
if conditional: |
|
if norm == 'InstanceNorm++': |
|
return functools.partial(ConditionalInstanceNorm2dPlus, num_classes=config.model.num_classes) |
|
else: |
|
raise NotImplementedError(f'{norm} not implemented yet.') |
|
else: |
|
if norm == 'InstanceNorm': |
|
return nn.InstanceNorm2d |
|
elif norm == 'InstanceNorm++': |
|
return InstanceNorm2dPlus |
|
elif norm == 'VarianceNorm': |
|
return VarianceNorm2d |
|
elif norm == 'GroupNorm': |
|
return nn.GroupNorm |
|
else: |
|
raise ValueError('Unknown normalization: %s' % norm) |
|
|
|
|
|
class ConditionalBatchNorm2d(nn.Module): |
|
def __init__(self, num_features, num_classes, bias=True): |
|
super().__init__() |
|
self.num_features = num_features |
|
self.bias = bias |
|
self.bn = nn.BatchNorm2d(num_features, affine=False) |
|
if self.bias: |
|
self.embed = nn.Embedding(num_classes, num_features * 2) |
|
self.embed.weight.data[:, :num_features].uniform_() |
|
self.embed.weight.data[:, num_features:].zero_() |
|
else: |
|
self.embed = nn.Embedding(num_classes, num_features) |
|
self.embed.weight.data.uniform_() |
|
|
|
def forward(self, x, y): |
|
out = self.bn(x) |
|
if self.bias: |
|
gamma, beta = self.embed(y).chunk(2, dim=1) |
|
out = gamma.view(-1, self.num_features, 1, 1) * out + beta.view(-1, self.num_features, 1, 1) |
|
else: |
|
gamma = self.embed(y) |
|
out = gamma.view(-1, self.num_features, 1, 1) * out |
|
return out |
|
|
|
|
|
class ConditionalInstanceNorm2d(nn.Module): |
|
def __init__(self, num_features, num_classes, bias=True): |
|
super().__init__() |
|
self.num_features = num_features |
|
self.bias = bias |
|
self.instance_norm = nn.InstanceNorm2d(num_features, affine=False, track_running_stats=False) |
|
if bias: |
|
self.embed = nn.Embedding(num_classes, num_features * 2) |
|
self.embed.weight.data[:, :num_features].uniform_() |
|
self.embed.weight.data[:, num_features:].zero_() |
|
else: |
|
self.embed = nn.Embedding(num_classes, num_features) |
|
self.embed.weight.data.uniform_() |
|
|
|
def forward(self, x, y): |
|
h = self.instance_norm(x) |
|
if self.bias: |
|
gamma, beta = self.embed(y).chunk(2, dim=-1) |
|
out = gamma.view(-1, self.num_features, 1, 1) * h + beta.view(-1, self.num_features, 1, 1) |
|
else: |
|
gamma = self.embed(y) |
|
out = gamma.view(-1, self.num_features, 1, 1) * h |
|
return out |
|
|
|
|
|
class ConditionalVarianceNorm2d(nn.Module): |
|
def __init__(self, num_features, num_classes, bias=False): |
|
super().__init__() |
|
self.num_features = num_features |
|
self.bias = bias |
|
self.embed = nn.Embedding(num_classes, num_features) |
|
self.embed.weight.data.normal_(1, 0.02) |
|
|
|
def forward(self, x, y): |
|
vars = torch.var(x, dim=(2, 3), keepdim=True) |
|
h = x / torch.sqrt(vars + 1e-5) |
|
|
|
gamma = self.embed(y) |
|
out = gamma.view(-1, self.num_features, 1, 1) * h |
|
return out |
|
|
|
|
|
class VarianceNorm2d(nn.Module): |
|
def __init__(self, num_features, bias=False): |
|
super().__init__() |
|
self.num_features = num_features |
|
self.bias = bias |
|
self.alpha = nn.Parameter(torch.zeros(num_features)) |
|
self.alpha.data.normal_(1, 0.02) |
|
|
|
def forward(self, x): |
|
vars = torch.var(x, dim=(2, 3), keepdim=True) |
|
h = x / torch.sqrt(vars + 1e-5) |
|
|
|
out = self.alpha.view(-1, self.num_features, 1, 1) * h |
|
return out |
|
|
|
|
|
class ConditionalNoneNorm2d(nn.Module): |
|
def __init__(self, num_features, num_classes, bias=True): |
|
super().__init__() |
|
self.num_features = num_features |
|
self.bias = bias |
|
if bias: |
|
self.embed = nn.Embedding(num_classes, num_features * 2) |
|
self.embed.weight.data[:, :num_features].uniform_() |
|
self.embed.weight.data[:, num_features:].zero_() |
|
else: |
|
self.embed = nn.Embedding(num_classes, num_features) |
|
self.embed.weight.data.uniform_() |
|
|
|
def forward(self, x, y): |
|
if self.bias: |
|
gamma, beta = self.embed(y).chunk(2, dim=-1) |
|
out = gamma.view(-1, self.num_features, 1, 1) * x + beta.view(-1, self.num_features, 1, 1) |
|
else: |
|
gamma = self.embed(y) |
|
out = gamma.view(-1, self.num_features, 1, 1) * x |
|
return out |
|
|
|
|
|
class NoneNorm2d(nn.Module): |
|
def __init__(self, num_features, bias=True): |
|
super().__init__() |
|
|
|
def forward(self, x): |
|
return x |
|
|
|
|
|
class InstanceNorm2dPlus(nn.Module): |
|
def __init__(self, num_features, bias=True): |
|
super().__init__() |
|
self.num_features = num_features |
|
self.bias = bias |
|
self.instance_norm = nn.InstanceNorm2d(num_features, affine=False, track_running_stats=False) |
|
self.alpha = nn.Parameter(torch.zeros(num_features)) |
|
self.gamma = nn.Parameter(torch.zeros(num_features)) |
|
self.alpha.data.normal_(1, 0.02) |
|
self.gamma.data.normal_(1, 0.02) |
|
if bias: |
|
self.beta = nn.Parameter(torch.zeros(num_features)) |
|
|
|
def forward(self, x): |
|
means = torch.mean(x, dim=(2, 3)) |
|
m = torch.mean(means, dim=-1, keepdim=True) |
|
v = torch.var(means, dim=-1, keepdim=True) |
|
means = (means - m) / (torch.sqrt(v + 1e-5)) |
|
h = self.instance_norm(x) |
|
|
|
if self.bias: |
|
h = h + means[..., None, None] * self.alpha[..., None, None] |
|
out = self.gamma.view(-1, self.num_features, 1, 1) * h + self.beta.view(-1, self.num_features, 1, 1) |
|
else: |
|
h = h + means[..., None, None] * self.alpha[..., None, None] |
|
out = self.gamma.view(-1, self.num_features, 1, 1) * h |
|
return out |
|
|
|
|
|
class ConditionalInstanceNorm2dPlus(nn.Module): |
|
def __init__(self, num_features, num_classes, bias=True): |
|
super().__init__() |
|
self.num_features = num_features |
|
self.bias = bias |
|
self.instance_norm = nn.InstanceNorm2d(num_features, affine=False, track_running_stats=False) |
|
if bias: |
|
self.embed = nn.Embedding(num_classes, num_features * 3) |
|
self.embed.weight.data[:, :2 * num_features].normal_(1, 0.02) |
|
self.embed.weight.data[:, 2 * num_features:].zero_() |
|
else: |
|
self.embed = nn.Embedding(num_classes, 2 * num_features) |
|
self.embed.weight.data.normal_(1, 0.02) |
|
|
|
def forward(self, x, y): |
|
means = torch.mean(x, dim=(2, 3)) |
|
m = torch.mean(means, dim=-1, keepdim=True) |
|
v = torch.var(means, dim=-1, keepdim=True) |
|
means = (means - m) / (torch.sqrt(v + 1e-5)) |
|
h = self.instance_norm(x) |
|
|
|
if self.bias: |
|
gamma, alpha, beta = self.embed(y).chunk(3, dim=-1) |
|
h = h + means[..., None, None] * alpha[..., None, None] |
|
out = gamma.view(-1, self.num_features, 1, 1) * h + beta.view(-1, self.num_features, 1, 1) |
|
else: |
|
gamma, alpha = self.embed(y).chunk(2, dim=-1) |
|
h = h + means[..., None, None] * alpha[..., None, None] |
|
out = gamma.view(-1, self.num_features, 1, 1) * h |
|
return out |
|
|