Upload WNetMSS3D
Browse files- WNetConfigs.py +41 -0
- WNets.py +36 -0
- attention_unet3d.py +211 -0
- config.json +15 -0
- model.safetensors +3 -0
- unet3d.py +321 -0
- w_net_3d.py +126 -0
WNetConfigs.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
class WNet3DConfig(PretrainedConfig):
|
5 |
+
model_type = "WNet"
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
in_ch=1,
|
9 |
+
out_ch=5,
|
10 |
+
init_features=64,
|
11 |
+
**kwargs):
|
12 |
+
self.in_ch = in_ch
|
13 |
+
self.out_ch = out_ch
|
14 |
+
self.init_features = init_features
|
15 |
+
super().__init__(**kwargs)
|
16 |
+
|
17 |
+
class AttWNet3DConfig(PretrainedConfig):
|
18 |
+
model_type = "AttWNet"
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
in_ch=1,
|
22 |
+
out_ch=5,
|
23 |
+
init_features=64,
|
24 |
+
**kwargs):
|
25 |
+
self.in_ch = in_ch
|
26 |
+
self.out_ch = out_ch
|
27 |
+
self.init_features = init_features
|
28 |
+
super().__init__(**kwargs)
|
29 |
+
|
30 |
+
class WNetMSS3DConfig(PretrainedConfig):
|
31 |
+
model_type = "WNetMSS"
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
in_ch=1,
|
35 |
+
out_ch=5,
|
36 |
+
init_features=64,
|
37 |
+
**kwargs):
|
38 |
+
self.in_ch = in_ch
|
39 |
+
self.out_ch = out_ch
|
40 |
+
self.init_features = init_features
|
41 |
+
super().__init__(**kwargs)
|
WNets.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedModel
|
2 |
+
from .w_net_3d import WNet3dUNet, WNet3dAttUNet, WNet3dUNetMSS
|
3 |
+
from .WNetConfigs import WNet3DConfig, AttWNet3DConfig, WNetMSS3DConfig
|
4 |
+
|
5 |
+
class WNet3D(PreTrainedModel):
|
6 |
+
config_class = WNet3DConfig
|
7 |
+
def __init__(self, config):
|
8 |
+
super().__init__(config)
|
9 |
+
self.model = WNet3dUNet(
|
10 |
+
in_ch=config.in_ch,
|
11 |
+
out_ch=config.out_ch,
|
12 |
+
init_features=config.init_features)
|
13 |
+
def forward(self, x):
|
14 |
+
return self.model(x)
|
15 |
+
|
16 |
+
class AttWNet3D(PreTrainedModel):
|
17 |
+
config_class = AttWNet3DConfig
|
18 |
+
def __init__(self, config):
|
19 |
+
super().__init__(config)
|
20 |
+
self.model = WNet3dAttUNet(
|
21 |
+
in_ch=config.in_ch,
|
22 |
+
out_ch=config.out_ch,
|
23 |
+
init_features=config.init_features)
|
24 |
+
def forward(self, x):
|
25 |
+
return self.model(x)
|
26 |
+
|
27 |
+
class WNetMSS3D(PreTrainedModel):
|
28 |
+
config_class = WNetMSS3DConfig
|
29 |
+
def __init__(self, config):
|
30 |
+
super().__init__(config)
|
31 |
+
self.model = WNet3dUNetMSS(
|
32 |
+
in_ch=config.in_ch,
|
33 |
+
out_ch=config.out_ch,
|
34 |
+
init_features=config.init_features)
|
35 |
+
def forward(self, x):
|
36 |
+
return self.model(x)
|
attention_unet3d.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# from __future__ import print_function, division
|
4 |
+
"""
|
5 |
+
|
6 |
+
Purpose :
|
7 |
+
|
8 |
+
"""
|
9 |
+
import torch.nn
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
|
13 |
+
__author__ = "Chethan Radhakrishna and Soumick Chatterjee"
|
14 |
+
__credits__ = ["Chethan Radhakrishna", "Soumick Chatterjee"]
|
15 |
+
__license__ = "GPL"
|
16 |
+
__version__ = "1.0.0"
|
17 |
+
__maintainer__ = "Chethan Radhakrishna"
|
18 |
+
__email__ = "chethan.radhakrishna@st.ovgu.de"
|
19 |
+
__status__ = "Development"
|
20 |
+
|
21 |
+
|
22 |
+
class ConvBlock(nn.Module):
|
23 |
+
"""
|
24 |
+
Convolution Block
|
25 |
+
"""
|
26 |
+
|
27 |
+
def __init__(self, in_channels, out_channels, k_size=3, stride=1, padding=1, bias=True):
|
28 |
+
super(ConvBlock, self).__init__()
|
29 |
+
self.conv = nn.Sequential(
|
30 |
+
nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=k_size,
|
31 |
+
stride=stride, padding=padding, bias=bias),
|
32 |
+
nn.PReLU(num_parameters=out_channels, init=0.25),
|
33 |
+
# nn.Dropout3d(),
|
34 |
+
nn.BatchNorm3d(num_features=out_channels),
|
35 |
+
nn.Conv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=k_size,
|
36 |
+
stride=stride, padding=padding, bias=bias),
|
37 |
+
nn.PReLU(num_parameters=out_channels, init=0.25),
|
38 |
+
# nn.Dropout3d(),
|
39 |
+
nn.BatchNorm3d(num_features=out_channels))
|
40 |
+
|
41 |
+
def forward(self, x):
|
42 |
+
x = self.conv(x)
|
43 |
+
return x
|
44 |
+
|
45 |
+
|
46 |
+
class SeparableConvBlock(nn.Module):
|
47 |
+
"""
|
48 |
+
Convolution Block
|
49 |
+
"""
|
50 |
+
|
51 |
+
def __init__(self, in_channels, out_channels, k_size=3, stride=1, padding=1, bias=True):
|
52 |
+
super(SeparableConvBlock, self).__init__()
|
53 |
+
self.conv = nn.Sequential(
|
54 |
+
nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=1,
|
55 |
+
bias=bias),
|
56 |
+
nn.Conv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=k_size,
|
57 |
+
stride=stride, padding=padding, bias=bias),
|
58 |
+
nn.PReLU(num_parameters=out_channels, init=0.25),
|
59 |
+
# nn.Dropout3d(),
|
60 |
+
nn.BatchNorm3d(num_features=out_channels),
|
61 |
+
nn.Conv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=1,
|
62 |
+
bias=bias),
|
63 |
+
nn.Conv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=k_size,
|
64 |
+
stride=stride, padding=padding, bias=bias),
|
65 |
+
nn.PReLU(num_parameters=out_channels, init=0.25),
|
66 |
+
# nn.Dropout3d(),
|
67 |
+
nn.BatchNorm3d(num_features=out_channels))
|
68 |
+
|
69 |
+
def forward(self, x):
|
70 |
+
x = self.conv(x)
|
71 |
+
return x
|
72 |
+
|
73 |
+
|
74 |
+
class UpConv(nn.Module):
|
75 |
+
"""
|
76 |
+
Up Convolution Block
|
77 |
+
"""
|
78 |
+
|
79 |
+
# def __init__(self, in_ch, out_ch):
|
80 |
+
def __init__(self, in_channels, out_channels, k_size=3, stride=1, padding=1):
|
81 |
+
super(UpConv, self).__init__()
|
82 |
+
self.up = nn.Sequential(
|
83 |
+
nn.Upsample(scale_factor=2),
|
84 |
+
nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=k_size,
|
85 |
+
stride=stride, padding=padding),
|
86 |
+
nn.BatchNorm3d(num_features=out_channels),
|
87 |
+
nn.PReLU(num_parameters=out_channels, init=0.25))
|
88 |
+
|
89 |
+
def forward(self, x):
|
90 |
+
x = self.up(x)
|
91 |
+
return x
|
92 |
+
|
93 |
+
|
94 |
+
class AttentionBlock(nn.Module):
|
95 |
+
"""
|
96 |
+
Attention Block
|
97 |
+
"""
|
98 |
+
|
99 |
+
def __init__(self, f_g, f_l, f_int):
|
100 |
+
super(AttentionBlock, self).__init__()
|
101 |
+
|
102 |
+
self.W_g = nn.Sequential(
|
103 |
+
nn.Conv3d(f_l, f_int, kernel_size=1, stride=1, padding=0, bias=True),
|
104 |
+
nn.BatchNorm3d(f_int)
|
105 |
+
)
|
106 |
+
|
107 |
+
self.W_x = nn.Sequential(
|
108 |
+
nn.Conv3d(f_g, f_int, kernel_size=1, stride=1, padding=0, bias=True),
|
109 |
+
nn.BatchNorm3d(f_int)
|
110 |
+
)
|
111 |
+
|
112 |
+
self.psi = nn.Sequential(
|
113 |
+
nn.Conv3d(f_int, 1, kernel_size=1, stride=1, padding=0, bias=True),
|
114 |
+
nn.BatchNorm3d(1),
|
115 |
+
nn.Sigmoid()
|
116 |
+
)
|
117 |
+
|
118 |
+
self.relu = nn.ReLU(inplace=True)
|
119 |
+
|
120 |
+
def forward(self, g, x):
|
121 |
+
g1 = self.W_g(g)
|
122 |
+
x1 = self.W_x(x)
|
123 |
+
psi = self.relu(g1 + x1)
|
124 |
+
psi = self.psi(psi)
|
125 |
+
out = x * psi
|
126 |
+
return out
|
127 |
+
|
128 |
+
|
129 |
+
class AttUnet(nn.Module):
|
130 |
+
"""
|
131 |
+
Attention Unet implementation
|
132 |
+
Paper: https://arxiv.org/abs/1804.03999
|
133 |
+
"""
|
134 |
+
|
135 |
+
def __init__(self, in_ch=1, out_ch=6, init_features=64):
|
136 |
+
super(AttUnet, self).__init__()
|
137 |
+
|
138 |
+
n1 = init_features
|
139 |
+
filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16]
|
140 |
+
|
141 |
+
self.Maxpool1 = nn.MaxPool3d(kernel_size=2, stride=2)
|
142 |
+
self.Maxpool2 = nn.MaxPool3d(kernel_size=2, stride=2)
|
143 |
+
self.Maxpool3 = nn.MaxPool3d(kernel_size=2, stride=2)
|
144 |
+
self.Maxpool4 = nn.MaxPool3d(kernel_size=2, stride=2)
|
145 |
+
|
146 |
+
self.Conv1 = ConvBlock(in_ch, filters[0])
|
147 |
+
self.Conv2 = SeparableConvBlock(filters[0], filters[1])
|
148 |
+
self.Conv3 = SeparableConvBlock(filters[1], filters[2])
|
149 |
+
self.Conv4 = SeparableConvBlock(filters[2], filters[3])
|
150 |
+
self.Conv5 = SeparableConvBlock(filters[3], filters[4])
|
151 |
+
|
152 |
+
self.Up5 = UpConv(filters[4], filters[3])
|
153 |
+
self.Att5 = AttentionBlock(f_g=filters[3], f_l=filters[3], f_int=filters[2])
|
154 |
+
self.Up_conv5 = SeparableConvBlock(filters[4], filters[3])
|
155 |
+
|
156 |
+
self.Up4 = UpConv(filters[3], filters[2])
|
157 |
+
self.Att4 = AttentionBlock(f_g=filters[2], f_l=filters[2], f_int=filters[1])
|
158 |
+
self.Up_conv4 = SeparableConvBlock(filters[3], filters[2])
|
159 |
+
|
160 |
+
self.Up3 = UpConv(filters[2], filters[1])
|
161 |
+
self.Att3 = AttentionBlock(f_g=filters[1], f_l=filters[1], f_int=filters[0])
|
162 |
+
self.Up_conv3 = SeparableConvBlock(filters[2], filters[1])
|
163 |
+
|
164 |
+
self.Up2 = UpConv(filters[1], filters[0])
|
165 |
+
self.Att2 = AttentionBlock(f_g=filters[0], f_l=filters[0], f_int=32)
|
166 |
+
self.Up_conv2 = ConvBlock(filters[1], filters[0])
|
167 |
+
|
168 |
+
self.Conv = nn.Conv3d(filters[0], out_ch, kernel_size=1, stride=1, padding=0)
|
169 |
+
|
170 |
+
# self.active = torch.nn.Sigmoid()
|
171 |
+
|
172 |
+
def forward(self, x):
|
173 |
+
e1 = self.Conv1(x)
|
174 |
+
|
175 |
+
e2 = self.Maxpool1(e1)
|
176 |
+
e2 = self.Conv2(e2)
|
177 |
+
|
178 |
+
e3 = self.Maxpool2(e2)
|
179 |
+
e3 = self.Conv3(e3)
|
180 |
+
|
181 |
+
e4 = self.Maxpool3(e3)
|
182 |
+
e4 = self.Conv4(e4)
|
183 |
+
|
184 |
+
e5 = self.Maxpool4(e4)
|
185 |
+
e5 = self.Conv5(e5)
|
186 |
+
|
187 |
+
d5 = self.Up5(e5)
|
188 |
+
x4 = self.Att5(d5, e4)
|
189 |
+
d5 = torch.cat((x4, d5), dim=1)
|
190 |
+
d5 = self.Up_conv5(d5)
|
191 |
+
|
192 |
+
d4 = self.Up4(d5)
|
193 |
+
x3 = self.Att4(d4, e3)
|
194 |
+
d4 = torch.cat((x3, d4), dim=1)
|
195 |
+
d4 = self.Up_conv4(d4)
|
196 |
+
|
197 |
+
d3 = self.Up3(d4)
|
198 |
+
x2 = self.Att3(d3, e2)
|
199 |
+
d3 = torch.cat((x2, d3), dim=1)
|
200 |
+
d3 = self.Up_conv3(d3)
|
201 |
+
|
202 |
+
d2 = self.Up2(d3)
|
203 |
+
x1 = self.Att2(d2, e1)
|
204 |
+
d2 = torch.cat((x1, d2), dim=1)
|
205 |
+
d2 = self.Up_conv2(d2)
|
206 |
+
|
207 |
+
out = self.Conv(d2)
|
208 |
+
|
209 |
+
# out = self.active(out)
|
210 |
+
|
211 |
+
return out
|
config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"WNetMSS3D"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "WNetConfigs.WNetMSS3DConfig",
|
7 |
+
"AutoModel": "WNets.WNetMSS3D"
|
8 |
+
},
|
9 |
+
"in_ch": 1,
|
10 |
+
"init_features": 64,
|
11 |
+
"model_type": "WNetMSS",
|
12 |
+
"out_ch": 5,
|
13 |
+
"torch_dtype": "float32",
|
14 |
+
"transformers_version": "4.44.2"
|
15 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2095e12a7cace20a37746793dbbbfda62ad277b7cc537ad002850765f2d08782
|
3 |
+
size 929631232
|
unet3d.py
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# from __future__ import print_function, division
|
4 |
+
"""
|
5 |
+
|
6 |
+
Purpose :
|
7 |
+
|
8 |
+
"""
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.utils.data
|
13 |
+
|
14 |
+
__author__ = "Kartik Prabhu, Mahantesh Pattadkal, and Soumick Chatterjee"
|
15 |
+
__copyright__ = "Copyright 2020, Faculty of Computer Science, Otto von Guericke University Magdeburg, Germany"
|
16 |
+
__credits__ = ["Kartik Prabhu", "Mahantesh Pattadkal", "Soumick Chatterjee"]
|
17 |
+
__license__ = "GPL"
|
18 |
+
__version__ = "1.0.0"
|
19 |
+
__maintainer__ = "Soumick Chatterjee"
|
20 |
+
__email__ = "soumick.chatterjee@ovgu.de"
|
21 |
+
__status__ = "Production"
|
22 |
+
|
23 |
+
|
24 |
+
class ConvBlock(nn.Module):
|
25 |
+
"""
|
26 |
+
Convolution Block
|
27 |
+
"""
|
28 |
+
|
29 |
+
def __init__(self, in_channels, out_channels, k_size=3, stride=1, padding=1, bias=True):
|
30 |
+
super(ConvBlock, self).__init__()
|
31 |
+
self.conv = nn.Sequential(
|
32 |
+
nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=k_size,
|
33 |
+
stride=stride, padding=padding, bias=bias),
|
34 |
+
nn.BatchNorm3d(num_features=out_channels),
|
35 |
+
nn.LeakyReLU(inplace=True),
|
36 |
+
nn.Conv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=k_size,
|
37 |
+
stride=stride, padding=padding, bias=bias),
|
38 |
+
nn.BatchNorm3d(num_features=out_channels),
|
39 |
+
nn.LeakyReLU(inplace=True)
|
40 |
+
)
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
x = self.conv(x)
|
44 |
+
return x
|
45 |
+
|
46 |
+
|
47 |
+
class SeparableConvBlock(nn.Module):
|
48 |
+
"""
|
49 |
+
Convolution Block
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(self, in_channels, out_channels, k_size=3, stride=1, padding=1, bias=True):
|
53 |
+
super(SeparableConvBlock, self).__init__()
|
54 |
+
self.conv = nn.Sequential(
|
55 |
+
nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=1,
|
56 |
+
bias=bias),
|
57 |
+
nn.Conv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=k_size,
|
58 |
+
stride=stride, padding=padding, bias=bias),
|
59 |
+
nn.PReLU(num_parameters=out_channels, init=0.25),
|
60 |
+
nn.Dropout3d(),
|
61 |
+
nn.BatchNorm3d(num_features=out_channels),
|
62 |
+
nn.Conv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=1,
|
63 |
+
bias=bias),
|
64 |
+
nn.Conv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=k_size,
|
65 |
+
stride=stride, padding=padding, bias=bias),
|
66 |
+
nn.PReLU(num_parameters=out_channels, init=0.25),
|
67 |
+
nn.Dropout3d(),
|
68 |
+
nn.BatchNorm3d(num_features=out_channels))
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
x = self.conv(x)
|
72 |
+
return x
|
73 |
+
|
74 |
+
|
75 |
+
class UpConv(nn.Module):
|
76 |
+
"""
|
77 |
+
Up Convolution Block
|
78 |
+
"""
|
79 |
+
|
80 |
+
# def __init__(self, in_ch, out_ch):
|
81 |
+
def __init__(self, in_channels, out_channels, k_size=3, stride=1, padding=1, bias=True):
|
82 |
+
super(UpConv, self).__init__()
|
83 |
+
self.up = nn.Sequential(
|
84 |
+
nn.Upsample(scale_factor=2),
|
85 |
+
nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=k_size,
|
86 |
+
stride=stride, padding=padding, bias=bias),
|
87 |
+
nn.BatchNorm3d(num_features=out_channels),
|
88 |
+
nn.LeakyReLU(inplace=True))
|
89 |
+
|
90 |
+
def forward(self, x):
|
91 |
+
x = self.up(x)
|
92 |
+
return x
|
93 |
+
|
94 |
+
|
95 |
+
class UNet(nn.Module):
|
96 |
+
"""
|
97 |
+
UNet - Basic Implementation
|
98 |
+
Input _ [batch * channel(# of channels of each image) * depth(# of frames) * height * width].
|
99 |
+
Paper : https://arxiv.org/abs/1505.04597
|
100 |
+
"""
|
101 |
+
|
102 |
+
def __init__(self, in_ch=1, out_ch=1, init_features=64):
|
103 |
+
super(UNet, self).__init__()
|
104 |
+
|
105 |
+
n1 = init_features
|
106 |
+
filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16] # 64,128,256,512,1024
|
107 |
+
|
108 |
+
self.Maxpool1 = nn.MaxPool3d(kernel_size=2, stride=2)
|
109 |
+
self.Maxpool2 = nn.MaxPool3d(kernel_size=2, stride=2)
|
110 |
+
self.Maxpool3 = nn.MaxPool3d(kernel_size=2, stride=2)
|
111 |
+
self.Maxpool4 = nn.MaxPool3d(kernel_size=2, stride=2)
|
112 |
+
|
113 |
+
self.Conv1 = ConvBlock(in_ch, filters[0])
|
114 |
+
self.Conv2 = SeparableConvBlock(filters[0], filters[1])
|
115 |
+
self.Conv3 = SeparableConvBlock(filters[1], filters[2])
|
116 |
+
self.Conv4 = SeparableConvBlock(filters[2], filters[3])
|
117 |
+
self.Conv5 = SeparableConvBlock(filters[3], filters[4])
|
118 |
+
|
119 |
+
self.Up5 = UpConv(filters[4], filters[3])
|
120 |
+
self.Up_conv5 = SeparableConvBlock(filters[4], filters[3])
|
121 |
+
|
122 |
+
self.Up4 = UpConv(filters[3], filters[2])
|
123 |
+
self.Up_conv4 = SeparableConvBlock(filters[3], filters[2])
|
124 |
+
|
125 |
+
self.Up3 = UpConv(filters[2], filters[1])
|
126 |
+
self.Up_conv3 = SeparableConvBlock(filters[2], filters[1])
|
127 |
+
|
128 |
+
self.Up2 = UpConv(filters[1], filters[0])
|
129 |
+
self.Up_conv2 = ConvBlock(filters[1], filters[0])
|
130 |
+
|
131 |
+
self.Conv = nn.Conv3d(filters[0], out_ch, kernel_size=1, stride=1, padding=0)
|
132 |
+
|
133 |
+
# self.active = torch.nn.Sigmoid()
|
134 |
+
|
135 |
+
def forward(self, x):
|
136 |
+
# print("unet")
|
137 |
+
# print(x.shape)
|
138 |
+
# print(padded.shape)
|
139 |
+
|
140 |
+
e1 = self.Conv1(x)
|
141 |
+
# print("conv1:")
|
142 |
+
# print(e1.shape)
|
143 |
+
|
144 |
+
e2 = self.Maxpool1(e1)
|
145 |
+
e2 = self.Conv2(e2)
|
146 |
+
# print("conv2:")
|
147 |
+
# print(e2.shape)
|
148 |
+
|
149 |
+
e3 = self.Maxpool2(e2)
|
150 |
+
e3 = self.Conv3(e3)
|
151 |
+
# print("conv3:")
|
152 |
+
# print(e3.shape)
|
153 |
+
|
154 |
+
e4 = self.Maxpool3(e3)
|
155 |
+
e4 = self.Conv4(e4)
|
156 |
+
# print("conv4:")
|
157 |
+
# print(e4.shape)
|
158 |
+
|
159 |
+
e5 = self.Maxpool4(e4)
|
160 |
+
e5 = self.Conv5(e5)
|
161 |
+
# print("conv5:")
|
162 |
+
# print(e5.shape)
|
163 |
+
|
164 |
+
d5 = self.Up5(e5)
|
165 |
+
# print("d5:")
|
166 |
+
# print(d5.shape)
|
167 |
+
# print("e4:")
|
168 |
+
# print(e4.shape)
|
169 |
+
d5 = torch.cat((e4, d5), dim=1)
|
170 |
+
d5 = self.Up_conv5(d5)
|
171 |
+
# print("upconv5:")
|
172 |
+
# print(d5.size)
|
173 |
+
|
174 |
+
d4 = self.Up4(d5)
|
175 |
+
# print("d4:")
|
176 |
+
# print(d4.shape)
|
177 |
+
d4 = torch.cat((e3, d4), dim=1)
|
178 |
+
d4 = self.Up_conv4(d4)
|
179 |
+
# print("upconv4:")
|
180 |
+
# print(d4.shape)
|
181 |
+
d3 = self.Up3(d4)
|
182 |
+
d3 = torch.cat((e2, d3), dim=1)
|
183 |
+
d3 = self.Up_conv3(d3)
|
184 |
+
# print("upconv3:")
|
185 |
+
# print(d3.shape)
|
186 |
+
d2 = self.Up2(d3)
|
187 |
+
d2 = torch.cat((e1, d2), dim=1)
|
188 |
+
d2 = self.Up_conv2(d2)
|
189 |
+
# print("upconv2:")
|
190 |
+
# print(d2.shape)
|
191 |
+
out = self.Conv(d2)
|
192 |
+
# print("out:")
|
193 |
+
# print(out.shape)
|
194 |
+
# d1 = self.active(out)
|
195 |
+
|
196 |
+
return out
|
197 |
+
|
198 |
+
|
199 |
+
class UNetDeepSup(nn.Module):
|
200 |
+
"""
|
201 |
+
UNet - Basic Implementation
|
202 |
+
Input _ [batch * channel(# of channels of each image) * depth(# of frames) * height * width].
|
203 |
+
Paper : https://arxiv.org/abs/1505.04597
|
204 |
+
"""
|
205 |
+
|
206 |
+
def __init__(self, in_ch=1, out_ch=1, init_features=64):
|
207 |
+
super(UNetDeepSup, self).__init__()
|
208 |
+
|
209 |
+
n1 = init_features
|
210 |
+
filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16] # 64,128,256,512,1024
|
211 |
+
|
212 |
+
self.Maxpool1 = nn.MaxPool3d(kernel_size=2, stride=2)
|
213 |
+
self.Maxpool2 = nn.MaxPool3d(kernel_size=2, stride=2)
|
214 |
+
self.Maxpool3 = nn.MaxPool3d(kernel_size=2, stride=2)
|
215 |
+
self.Maxpool4 = nn.MaxPool3d(kernel_size=2, stride=2)
|
216 |
+
|
217 |
+
self.Conv1 = ConvBlock(in_ch, filters[0])
|
218 |
+
self.Conv2 = SeparableConvBlock(filters[0], filters[1])
|
219 |
+
self.Conv3 = SeparableConvBlock(filters[1], filters[2])
|
220 |
+
self.Conv4 = SeparableConvBlock(filters[2], filters[3])
|
221 |
+
self.Conv5 = SeparableConvBlock(filters[3], filters[4])
|
222 |
+
|
223 |
+
# 1x1x1 Convolution for Deep Supervision
|
224 |
+
self.Conv_d3 = SeparableConvBlock(filters[1], 1)
|
225 |
+
self.Conv_d4 = SeparableConvBlock(filters[2], 1)
|
226 |
+
|
227 |
+
self.Up5 = UpConv(filters[4], filters[3])
|
228 |
+
self.Up_conv5 = SeparableConvBlock(filters[4], filters[3])
|
229 |
+
|
230 |
+
self.Up4 = UpConv(filters[3], filters[2])
|
231 |
+
self.Up_conv4 = SeparableConvBlock(filters[3], filters[2])
|
232 |
+
|
233 |
+
self.Up3 = UpConv(filters[2], filters[1])
|
234 |
+
self.Up_conv3 = SeparableConvBlock(filters[2], filters[1])
|
235 |
+
|
236 |
+
self.Up2 = UpConv(filters[1], filters[0])
|
237 |
+
self.Up_conv2 = ConvBlock(filters[1], filters[0])
|
238 |
+
|
239 |
+
self.Conv = nn.Conv3d(filters[0], out_ch, kernel_size=1, stride=1, padding=0)
|
240 |
+
|
241 |
+
for submodule in self.modules():
|
242 |
+
submodule.register_forward_hook(self.nan_hook)
|
243 |
+
|
244 |
+
# self.active = torch.nn.Sigmoid()
|
245 |
+
|
246 |
+
def nan_hook(self, module, inp, output):
|
247 |
+
for i, out in enumerate(output):
|
248 |
+
nan_mask = torch.isnan(out)
|
249 |
+
if nan_mask.any():
|
250 |
+
print("In", self.__class__.__name__)
|
251 |
+
torch.save(inp, '/nfs1/sutrave/outputs/nan_values_input/inp_2_Nov.pt')
|
252 |
+
raise RuntimeError(" classname " + self.__class__.__name__ + "i " + str(
|
253 |
+
i) + f" module: {module} classname {self.__class__.__name__} Found NAN in output {i} at indices: ",
|
254 |
+
nan_mask.nonzero(), "where:", out[nan_mask.nonzero()[:, 0].unique(sorted=True)])
|
255 |
+
|
256 |
+
def forward(self, x):
|
257 |
+
# print("unet")
|
258 |
+
# print(x.shape)
|
259 |
+
# print(padded.shape)
|
260 |
+
|
261 |
+
e1 = self.Conv1(x)
|
262 |
+
# print("conv1:")
|
263 |
+
# print(e1.shape)
|
264 |
+
|
265 |
+
e2 = self.Maxpool1(e1)
|
266 |
+
e2 = self.Conv2(e2)
|
267 |
+
# print("conv2:")
|
268 |
+
# print(e2.shape)
|
269 |
+
|
270 |
+
e3 = self.Maxpool2(e2)
|
271 |
+
e3 = self.Conv3(e3)
|
272 |
+
# print("conv3:")
|
273 |
+
# print(e3.shape)
|
274 |
+
|
275 |
+
e4 = self.Maxpool3(e3)
|
276 |
+
e4 = self.Conv4(e4)
|
277 |
+
# print("conv4:")
|
278 |
+
# print(e4.shape)
|
279 |
+
|
280 |
+
e5 = self.Maxpool4(e4)
|
281 |
+
e5 = self.Conv5(e5)
|
282 |
+
# print("conv5:")
|
283 |
+
# print(e5.shape)
|
284 |
+
|
285 |
+
d5 = self.Up5(e5)
|
286 |
+
# print("d5:")
|
287 |
+
# print(d5.shape)
|
288 |
+
# print("e4:")
|
289 |
+
# print(e4.shape)
|
290 |
+
d5 = torch.cat((e4, d5), dim=1)
|
291 |
+
d5 = self.Up_conv5(d5)
|
292 |
+
# print("upconv5:")
|
293 |
+
# print(d5.size)
|
294 |
+
|
295 |
+
d4 = self.Up4(d5)
|
296 |
+
# print("d4:")
|
297 |
+
# print(d4.shape)
|
298 |
+
d4 = torch.cat((e3, d4), dim=1)
|
299 |
+
d4 = self.Up_conv4(d4)
|
300 |
+
d4_out = self.Conv_d4(d4)
|
301 |
+
|
302 |
+
# print("upconv4:")
|
303 |
+
# print(d4.shape)
|
304 |
+
d3 = self.Up3(d4)
|
305 |
+
d3 = torch.cat((e2, d3), dim=1)
|
306 |
+
d3 = self.Up_conv3(d3)
|
307 |
+
d3_out = self.Conv_d3(d3)
|
308 |
+
|
309 |
+
# print("upconv3:")
|
310 |
+
# print(d3.shape)
|
311 |
+
d2 = self.Up2(d3)
|
312 |
+
d2 = torch.cat((e1, d2), dim=1)
|
313 |
+
d2 = self.Up_conv2(d2)
|
314 |
+
# print("upconv2:")
|
315 |
+
# print(d2.shape)
|
316 |
+
out = self.Conv(d2)
|
317 |
+
# print("out:")
|
318 |
+
# print(out.shape)
|
319 |
+
# d1 = self.active(out)
|
320 |
+
|
321 |
+
return out
|
w_net_3d.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# from __future__ import print_function, division
|
4 |
+
"""
|
5 |
+
|
6 |
+
Purpose :
|
7 |
+
|
8 |
+
"""
|
9 |
+
import torch.nn
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
from .attention_unet3d import AttUnet
|
13 |
+
from .unet3d import UNet, UNetDeepSup
|
14 |
+
|
15 |
+
__author__ = "Chethan Radhakrishna and Soumick Chatterjee"
|
16 |
+
__credits__ = ["Chethan Radhakrishna", "Soumick Chatterjee"]
|
17 |
+
__license__ = "GPL"
|
18 |
+
__version__ = "1.0.0"
|
19 |
+
__maintainer__ = "Chethan Radhakrishna"
|
20 |
+
__email__ = "chethan.radhakrishna@st.ovgu.de"
|
21 |
+
__status__ = "Development"
|
22 |
+
|
23 |
+
|
24 |
+
class WNet3dAttUNet(nn.Module):
|
25 |
+
"""
|
26 |
+
Attention Unet implementation
|
27 |
+
Paper: https://arxiv.org/abs/1804.03999
|
28 |
+
"""
|
29 |
+
|
30 |
+
def __init__(self, in_ch=1, out_ch=6, init_features=64):
|
31 |
+
super(WNet3dAttUNet, self).__init__()
|
32 |
+
|
33 |
+
self.Encoder = AttUnet(in_ch=in_ch, out_ch=out_ch, init_features=init_features)
|
34 |
+
self.Decoder = AttUnet(in_ch=out_ch, out_ch=in_ch, init_features=init_features)
|
35 |
+
|
36 |
+
self.activation = torch.nn.Softmax(dim=1)
|
37 |
+
|
38 |
+
self.Conv = nn.Conv3d(out_ch, in_ch, kernel_size=1, stride=1, padding=0)
|
39 |
+
|
40 |
+
def forward(self, ip, ip_mask=None, ops="both"):
|
41 |
+
encoder_op = self.Encoder(ip)
|
42 |
+
if ip_mask is not None:
|
43 |
+
encoder_op = ip_mask * encoder_op
|
44 |
+
class_prob = self.activation(encoder_op)
|
45 |
+
feature_rep = self.Conv(encoder_op)
|
46 |
+
if ops == "enc":
|
47 |
+
return class_prob, feature_rep
|
48 |
+
reconstructed_op = self.Decoder(class_prob)
|
49 |
+
# if ip_mask is not None:
|
50 |
+
# reconstructed_op = torch.amax(ip_mask, dim=1, keepdim=True) * reconstructed_op
|
51 |
+
if ops == "dec":
|
52 |
+
return reconstructed_op
|
53 |
+
if ops == "both":
|
54 |
+
return class_prob, feature_rep, reconstructed_op
|
55 |
+
else:
|
56 |
+
raise ValueError('Invalid ops, ops must be in [enc, dec, both]')
|
57 |
+
|
58 |
+
|
59 |
+
class WNet3dUNet(nn.Module):
|
60 |
+
"""
|
61 |
+
Attention Unet implementation
|
62 |
+
Paper: https://arxiv.org/abs/1804.03999
|
63 |
+
"""
|
64 |
+
|
65 |
+
def __init__(self, in_ch=1, out_ch=6, init_features=64):
|
66 |
+
super(WNet3dUNet, self).__init__()
|
67 |
+
|
68 |
+
self.Encoder = UNet(in_ch=in_ch, out_ch=out_ch, init_features=init_features)
|
69 |
+
self.Decoder = UNet(in_ch=out_ch, out_ch=in_ch, init_features=init_features)
|
70 |
+
|
71 |
+
self.activation = torch.nn.Softmax(dim=1)
|
72 |
+
|
73 |
+
self.Conv = nn.Conv3d(out_ch, in_ch, kernel_size=1, stride=1, padding=0)
|
74 |
+
|
75 |
+
def forward(self, ip, ip_mask=None, ops="both"):
|
76 |
+
encoder_op = self.Encoder(ip)
|
77 |
+
if ip_mask is not None:
|
78 |
+
encoder_op = ip_mask * encoder_op
|
79 |
+
class_prob = self.activation(encoder_op)
|
80 |
+
feature_rep = self.Conv(encoder_op)
|
81 |
+
if ops == "enc":
|
82 |
+
return class_prob, feature_rep
|
83 |
+
reconstructed_op = self.Decoder(class_prob)
|
84 |
+
# if ip_mask is not None:
|
85 |
+
# reconstructed_op = torch.amax(ip_mask, dim=1, keepdim=True) * reconstructed_op
|
86 |
+
if ops == "dec":
|
87 |
+
return reconstructed_op
|
88 |
+
if ops == "both":
|
89 |
+
return class_prob, feature_rep, reconstructed_op
|
90 |
+
else:
|
91 |
+
raise ValueError('Invalid ops, ops must be in [enc, dec, both]')
|
92 |
+
|
93 |
+
|
94 |
+
class WNet3dUNetMSS(nn.Module):
|
95 |
+
"""
|
96 |
+
Attention Unet implementation
|
97 |
+
Paper: https://arxiv.org/abs/1804.03999
|
98 |
+
"""
|
99 |
+
|
100 |
+
def __init__(self, in_ch=1, out_ch=6, init_features=64):
|
101 |
+
super(WNet3dUNetMSS, self).__init__()
|
102 |
+
|
103 |
+
self.Encoder = UNetDeepSup(in_ch=in_ch, out_ch=out_ch, init_features=init_features)
|
104 |
+
self.Decoder = UNetDeepSup(in_ch=out_ch, out_ch=in_ch, init_features=init_features)
|
105 |
+
|
106 |
+
self.activation = torch.nn.Softmax(dim=1)
|
107 |
+
|
108 |
+
self.Conv = nn.Conv3d(out_ch, in_ch, kernel_size=1, stride=1, padding=0)
|
109 |
+
|
110 |
+
def forward(self, ip, ip_mask=None, ops="both"):
|
111 |
+
encoder_op = self.Encoder(ip)
|
112 |
+
if ip_mask is not None:
|
113 |
+
encoder_op = ip_mask * encoder_op
|
114 |
+
class_prob = self.activation(encoder_op)
|
115 |
+
feature_rep = self.Conv(encoder_op)
|
116 |
+
if ops == "enc":
|
117 |
+
return class_prob, feature_rep
|
118 |
+
reconstructed_op = self.Decoder(class_prob)
|
119 |
+
# if ip_mask is not None:
|
120 |
+
# reconstructed_op = torch.amax(ip_mask, dim=1, keepdim=True) * reconstructed_op
|
121 |
+
if ops == "dec":
|
122 |
+
return reconstructed_op
|
123 |
+
if ops == "both":
|
124 |
+
return class_prob, feature_rep, reconstructed_op
|
125 |
+
else:
|
126 |
+
raise ValueError('Invalid ops, ops must be in [enc, dec, both]')
|