DILITHIUM_WeaklySup_WNetMSS3D_MIP / attention_unet3d.py
soumickmj's picture
Upload WNetMSS3D
896e872 verified
raw
history blame
6.74 kB
#!/usr/bin/env python
# from __future__ import print_function, division
"""
Purpose :
"""
import torch.nn
import torch
import torch.nn as nn
__author__ = "Chethan Radhakrishna and Soumick Chatterjee"
__credits__ = ["Chethan Radhakrishna", "Soumick Chatterjee"]
__license__ = "GPL"
__version__ = "1.0.0"
__maintainer__ = "Chethan Radhakrishna"
__email__ = "chethan.radhakrishna@st.ovgu.de"
__status__ = "Development"
class ConvBlock(nn.Module):
"""
Convolution Block
"""
def __init__(self, in_channels, out_channels, k_size=3, stride=1, padding=1, bias=True):
super(ConvBlock, self).__init__()
self.conv = nn.Sequential(
nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=k_size,
stride=stride, padding=padding, bias=bias),
nn.PReLU(num_parameters=out_channels, init=0.25),
# nn.Dropout3d(),
nn.BatchNorm3d(num_features=out_channels),
nn.Conv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=k_size,
stride=stride, padding=padding, bias=bias),
nn.PReLU(num_parameters=out_channels, init=0.25),
# nn.Dropout3d(),
nn.BatchNorm3d(num_features=out_channels))
def forward(self, x):
x = self.conv(x)
return x
class SeparableConvBlock(nn.Module):
"""
Convolution Block
"""
def __init__(self, in_channels, out_channels, k_size=3, stride=1, padding=1, bias=True):
super(SeparableConvBlock, self).__init__()
self.conv = nn.Sequential(
nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=1,
bias=bias),
nn.Conv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=k_size,
stride=stride, padding=padding, bias=bias),
nn.PReLU(num_parameters=out_channels, init=0.25),
# nn.Dropout3d(),
nn.BatchNorm3d(num_features=out_channels),
nn.Conv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=1,
bias=bias),
nn.Conv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=k_size,
stride=stride, padding=padding, bias=bias),
nn.PReLU(num_parameters=out_channels, init=0.25),
# nn.Dropout3d(),
nn.BatchNorm3d(num_features=out_channels))
def forward(self, x):
x = self.conv(x)
return x
class UpConv(nn.Module):
"""
Up Convolution Block
"""
# def __init__(self, in_ch, out_ch):
def __init__(self, in_channels, out_channels, k_size=3, stride=1, padding=1):
super(UpConv, self).__init__()
self.up = nn.Sequential(
nn.Upsample(scale_factor=2),
nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=k_size,
stride=stride, padding=padding),
nn.BatchNorm3d(num_features=out_channels),
nn.PReLU(num_parameters=out_channels, init=0.25))
def forward(self, x):
x = self.up(x)
return x
class AttentionBlock(nn.Module):
"""
Attention Block
"""
def __init__(self, f_g, f_l, f_int):
super(AttentionBlock, self).__init__()
self.W_g = nn.Sequential(
nn.Conv3d(f_l, f_int, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm3d(f_int)
)
self.W_x = nn.Sequential(
nn.Conv3d(f_g, f_int, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm3d(f_int)
)
self.psi = nn.Sequential(
nn.Conv3d(f_int, 1, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm3d(1),
nn.Sigmoid()
)
self.relu = nn.ReLU(inplace=True)
def forward(self, g, x):
g1 = self.W_g(g)
x1 = self.W_x(x)
psi = self.relu(g1 + x1)
psi = self.psi(psi)
out = x * psi
return out
class AttUnet(nn.Module):
"""
Attention Unet implementation
Paper: https://arxiv.org/abs/1804.03999
"""
def __init__(self, in_ch=1, out_ch=6, init_features=64):
super(AttUnet, self).__init__()
n1 = init_features
filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16]
self.Maxpool1 = nn.MaxPool3d(kernel_size=2, stride=2)
self.Maxpool2 = nn.MaxPool3d(kernel_size=2, stride=2)
self.Maxpool3 = nn.MaxPool3d(kernel_size=2, stride=2)
self.Maxpool4 = nn.MaxPool3d(kernel_size=2, stride=2)
self.Conv1 = ConvBlock(in_ch, filters[0])
self.Conv2 = SeparableConvBlock(filters[0], filters[1])
self.Conv3 = SeparableConvBlock(filters[1], filters[2])
self.Conv4 = SeparableConvBlock(filters[2], filters[3])
self.Conv5 = SeparableConvBlock(filters[3], filters[4])
self.Up5 = UpConv(filters[4], filters[3])
self.Att5 = AttentionBlock(f_g=filters[3], f_l=filters[3], f_int=filters[2])
self.Up_conv5 = SeparableConvBlock(filters[4], filters[3])
self.Up4 = UpConv(filters[3], filters[2])
self.Att4 = AttentionBlock(f_g=filters[2], f_l=filters[2], f_int=filters[1])
self.Up_conv4 = SeparableConvBlock(filters[3], filters[2])
self.Up3 = UpConv(filters[2], filters[1])
self.Att3 = AttentionBlock(f_g=filters[1], f_l=filters[1], f_int=filters[0])
self.Up_conv3 = SeparableConvBlock(filters[2], filters[1])
self.Up2 = UpConv(filters[1], filters[0])
self.Att2 = AttentionBlock(f_g=filters[0], f_l=filters[0], f_int=32)
self.Up_conv2 = ConvBlock(filters[1], filters[0])
self.Conv = nn.Conv3d(filters[0], out_ch, kernel_size=1, stride=1, padding=0)
# self.active = torch.nn.Sigmoid()
def forward(self, x):
e1 = self.Conv1(x)
e2 = self.Maxpool1(e1)
e2 = self.Conv2(e2)
e3 = self.Maxpool2(e2)
e3 = self.Conv3(e3)
e4 = self.Maxpool3(e3)
e4 = self.Conv4(e4)
e5 = self.Maxpool4(e4)
e5 = self.Conv5(e5)
d5 = self.Up5(e5)
x4 = self.Att5(d5, e4)
d5 = torch.cat((x4, d5), dim=1)
d5 = self.Up_conv5(d5)
d4 = self.Up4(d5)
x3 = self.Att4(d4, e3)
d4 = torch.cat((x3, d4), dim=1)
d4 = self.Up_conv4(d4)
d3 = self.Up3(d4)
x2 = self.Att3(d3, e2)
d3 = torch.cat((x2, d3), dim=1)
d3 = self.Up_conv3(d3)
d2 = self.Up2(d3)
x1 = self.Att2(d2, e1)
d2 = torch.cat((x1, d2), dim=1)
d2 = self.Up_conv2(d2)
out = self.Conv(d2)
# out = self.active(out)
return out