Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: ja
|
3 |
+
license: cc-by-sa-4.0
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-bert
|
7 |
+
- sentence-luke
|
8 |
+
- feature-extraction
|
9 |
+
- sentence-similarity
|
10 |
+
---
|
11 |
+
|
12 |
+
This is a Japanese sentence-LUKE model.
|
13 |
+
|
14 |
+
日本語用Sentence-LUKEモデルです。
|
15 |
+
|
16 |
+
[日本語Sentence-BERTモデル](https://huggingface.co/sonoisa/sentence-bert-base-ja-mean-tokens-v2)と同一のデータセットと設定で学習しました。
|
17 |
+
手元の非公開データセットでは、[日本語Sentence-BERTモデル](https://huggingface.co/sonoisa/sentence-bert-base-ja-mean-tokens-v2)と比べて定量的な精度が同等〜0.5pt程度高く、定性的な精度は本モデルの方が高い結果でした。
|
18 |
+
|
19 |
+
事前学習済みモデルとして[studio-ousia/luke-japanese-base-lite](https://huggingface.co/studio-ousia/luke-japanese-base-lite)を利用させていただきました。
|
20 |
+
|
21 |
+
|
22 |
+
# 使い方
|
23 |
+
|
24 |
+
```python
|
25 |
+
from transformers import MLukeTokenizer, LukeModel
|
26 |
+
import torch
|
27 |
+
|
28 |
+
|
29 |
+
class SentenceLukeJapanese:
|
30 |
+
def __init__(self, model_name_or_path, device=None):
|
31 |
+
self.tokenizer = MLukeTokenizer.from_pretrained(model_name_or_path)
|
32 |
+
self.model = LukeModel.from_pretrained(model_name_or_path)
|
33 |
+
self.model.eval()
|
34 |
+
|
35 |
+
if device is None:
|
36 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
37 |
+
self.device = torch.device(device)
|
38 |
+
self.model.to(device)
|
39 |
+
|
40 |
+
def _mean_pooling(self, model_output, attention_mask):
|
41 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
42 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
43 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
44 |
+
|
45 |
+
@torch.no_grad()
|
46 |
+
def encode(self, sentences, batch_size=8):
|
47 |
+
all_embeddings = []
|
48 |
+
iterator = range(0, len(sentences), batch_size)
|
49 |
+
for batch_idx in iterator:
|
50 |
+
batch = sentences[batch_idx:batch_idx + batch_size]
|
51 |
+
|
52 |
+
encoded_input = self.tokenizer.batch_encode_plus(batch, padding="longest",
|
53 |
+
truncation=True, return_tensors="pt").to(self.device)
|
54 |
+
model_output = self.model(**encoded_input)
|
55 |
+
sentence_embeddings = self._mean_pooling(model_output, encoded_input["attention_mask"]).to('cpu')
|
56 |
+
|
57 |
+
all_embeddings.extend(sentence_embeddings)
|
58 |
+
|
59 |
+
return torch.stack(all_embeddings)
|
60 |
+
|
61 |
+
|
62 |
+
MODEL_NAME = "sonoisa/sentence-luke-japanese-base-lite"
|
63 |
+
model = SentenceLukeJapanese(MODEL_NAME)
|
64 |
+
|
65 |
+
sentences = ["暴走したAI", "暴走した人工知能"]
|
66 |
+
sentence_embeddings = model.encode(sentences, batch_size=8)
|
67 |
+
|
68 |
+
print("Sentence embeddings:", sentence_embeddings)
|
69 |
+
```
|
70 |
+
|