Adding doc :open_book :sparkles:
Browse files
README.md
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
+
language:
|
9 |
+
- es
|
10 |
+
dataset:
|
11 |
+
- hackathon-pln-es/parallel-sentences
|
12 |
+
widget:
|
13 |
+
- text: "A ver si nos tenemos que poner todos en huelga hasta cobrar lo que queramos."
|
14 |
+
- text: "La huelga es el método de lucha más eficaz para conseguir mejoras en el salario."
|
15 |
+
- text: "Tendremos que optar por hacer una huelga para cobrar lo que queremos."
|
16 |
+
- text: "Queda descartada la huelga aunque no cobremos lo que queramos."
|
17 |
+
---
|
18 |
+
|
19 |
+
|
20 |
+
# paraphrase-spanish-distilroberta
|
21 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
22 |
+
|
23 |
+
We follow a **teacher-student** transfer learning approach to train an `bertin-roberta-base-spanish` model using parallel EN-ES sentence pairs.
|
24 |
+
|
25 |
+
## Usage (Sentence-Transformers)
|
26 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
27 |
+
|
28 |
+
```
|
29 |
+
pip install -U sentence-transformers
|
30 |
+
```
|
31 |
+
|
32 |
+
Then you can use the model like this:
|
33 |
+
```python
|
34 |
+
from sentence_transformers import SentenceTransformer
|
35 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
36 |
+
|
37 |
+
model = SentenceTransformer('sentence-transformers/paraphrase-spanish-distilroberta')
|
38 |
+
embeddings = model.encode(sentences)
|
39 |
+
print(embeddings)
|
40 |
+
```
|
41 |
+
|
42 |
+
## Usage (HuggingFace Transformers)
|
43 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
44 |
+
|
45 |
+
```python
|
46 |
+
from transformers import AutoTokenizer, AutoModel
|
47 |
+
import torch
|
48 |
+
import torch.nn.functional as F
|
49 |
+
|
50 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
51 |
+
def mean_pooling(model_output, attention_mask):
|
52 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
53 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
54 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
55 |
+
|
56 |
+
|
57 |
+
# Sentences we want sentence embeddings for
|
58 |
+
sentences = ['Este es un ejemplo", "Cada oración es transformada']
|
59 |
+
|
60 |
+
# Load model from HuggingFace Hub
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained('paraphrase-spanish-distilroberta')
|
62 |
+
model = AutoModel.from_pretrained('paraphrase-spanish-distilroberta')
|
63 |
+
|
64 |
+
# Tokenize sentences
|
65 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
66 |
+
|
67 |
+
# Compute token embeddings
|
68 |
+
with torch.no_grad():
|
69 |
+
model_output = model(**encoded_input)
|
70 |
+
|
71 |
+
# Perform pooling
|
72 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
73 |
+
|
74 |
+
# Normalize embeddings
|
75 |
+
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
76 |
+
|
77 |
+
print("Sentence embeddings:")
|
78 |
+
print(sentence_embeddings)
|
79 |
+
```
|
80 |
+
|
81 |
+
## Full Model Architecture
|
82 |
+
```
|
83 |
+
SentenceTransformer(
|
84 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
85 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
86 |
+
)
|
87 |
+
```
|
88 |
+
|
89 |
+
## Evaluation Results
|
90 |
+
|
91 |
+
Similarity Evaluation on STS-2017.es-en.txt and STS-2017.es-es.txt (translated manually for evaluation purposes)
|
92 |
+
|
93 |
+
We measure the semantic textual similarity (STS) between sentence pairs in different languages:
|
94 |
+
|
95 |
+
### ES-ES
|
96 |
+
| cosine_pearson | cosine_spearman | manhattan_pearson | manhattan_spearman | euclidean_pearson | euclidean_spearman | dot_pearson | dot_spearman |
|
97 |
+
| ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- |
|
98 |
+
0.8495 | 0.8579 | 0.8675 | 0.8474 | 0.8676 | 0.8478 | 0.8277 | 0.8258 |
|
99 |
+
|
100 |
+
### ES-EN
|
101 |
+
| cosine_pearson | cosine_spearman | manhattan_pearson | manhattan_spearman | euclidean_pearson | euclidean_spearman | dot_pearson | dot_spearman |
|
102 |
+
| ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- |
|
103 |
+
0.8344 | 0.8448 | 0.8279 | 0.8168 | 0.8282 | 0.8159 | 0.8083 | 0.8145 |
|
104 |
+
|
105 |
+
------
|
106 |
+
|
107 |
+
|
108 |
+
## Intended uses
|
109 |
+
|
110 |
+
Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures
|
111 |
+
the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
|
112 |
+
|
113 |
+
## Background
|
114 |
+
|
115 |
+
This model is a bilingual Spanish-English model trained according to instructions in the paper [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/pdf/2004.09813.pdf) and the [documentation](https://www.sbert.net/examples/training/multilingual/README.html) accompanying its companion python package. We have used the strongest available pretrained English Bi-Encoder ([paraphrase-mpnet-base-v2](https://www.sbert.net/docs/pretrained_models.html#sentence-embedding-models)) as a teacher model, and the pretrained Spanish [BERTIN](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) as the student model.
|
116 |
+
|
117 |
+
|
118 |
+
We developped this model during the
|
119 |
+
[Hackathon 2022 NLP - Spanish](https://somosnlp.org/hackathon),
|
120 |
+
organized by hackathon-pln-es Organization.
|
121 |
+
|
122 |
+
### Training data
|
123 |
+
|
124 |
+
We use the concatenation from multiple datasets with sentence pairs (EN-ES).
|
125 |
+
We could check out the dataset that was used during training: [parallel-sentences](https://huggingface.co/datasets/hackathon-pln-es/parallel-sentences)
|
126 |
+
|
127 |
+
| Dataset |
|
128 |
+
|--------------------------------------------------------|
|
129 |
+
| AllNLI - ES (SNLI + MultiNLI)|
|
130 |
+
| EuroParl |
|
131 |
+
| JW300 |
|
132 |
+
| News Commentary |
|
133 |
+
| Open Subtitles |
|
134 |
+
| TED 2020 |
|
135 |
+
| Tatoeba |
|
136 |
+
| WikiMatrix |
|
137 |
+
|
138 |
+
## Authors
|
139 |
+
|
140 |
+
[Anibal Pérez](https://huggingface.co/Anarpego),
|
141 |
+
[Emilio Tomás Ariza](https://huggingface.co/medardodt),
|
142 |
+
[Lautaro Gesuelli](https://huggingface.co/lautaro) y
|
143 |
+
[Mauricio Mazuecos](https://huggingface.co/mmazuecos).
|