solanaexpert
commited on
Upload 10 files
Browse files- .gitattributes +3 -0
- 20240726_080540_1d_greatest_candles.txt +31 -0
- BTC_USDT_15m_2020-01-01_2024-07-25.csv +3 -0
- BTC_USDT_1d_2020-01-01_2024-07-25.csv +0 -0
- BTC_USDT_1h_2020-01-01_2024-07-25.csv +0 -0
- BTC_USDT_1m_2020-01-01_2024-07-25.csv +3 -0
- BTC_USDT_4h_2020-01-01_2024-07-25.csv +0 -0
- BTC_USDT_5m_2020-01-01_2024-07-25.csv +3 -0
- bluewenne8.py +259 -0
- model.pkl +3 -0
- scaler.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
BTC_USDT_15m_2020-01-01_2024-07-25.csv filter=lfs diff=lfs merge=lfs -text
|
37 |
+
BTC_USDT_1m_2020-01-01_2024-07-25.csv filter=lfs diff=lfs merge=lfs -text
|
38 |
+
BTC_USDT_5m_2020-01-01_2024-07-25.csv filter=lfs diff=lfs merge=lfs -text
|
20240726_080540_1d_greatest_candles.txt
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Prediction for BTC (USDT):
|
2 |
+
- Last Timestamp: 1970-01-01 00:51:30
|
3 |
+
- Predicted Value: 64903.8037
|
4 |
+
|
5 |
+
Date heure prédiction environs 26/07/2024 10h25 : Cours actuel = 67080
|
6 |
+
https://www.tradingview.com/x/LWmnhQFi/
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
gitpod /workspace/CryptoForex-Trader-Framework/CCXT_ICHIMOKU (main) $ cd julie_scanner/
|
13 |
+
gitpod /workspace/CryptoForex-Trader-Framework/CCXT_ICHIMOKU/julie_scanner (main) $ python bluewenne8.py --timeframe 1d --train
|
14 |
+
Training model using the following BTC-related files:
|
15 |
+
- downloaded_history/BTC_USDT_15m_2020-01-01_2024-07-25.csv
|
16 |
+
- downloaded_history/BTC_USDT_1d_2020-01-01_2024-07-25.csv
|
17 |
+
- downloaded_history/BTC_USDT_1h_2020-01-01_2024-07-25.csv
|
18 |
+
- downloaded_history/BTC_USDT_1m_2020-01-01_2024-07-25.csv
|
19 |
+
- downloaded_history/BTC_USDT_4h_2020-01-01_2024-07-25.csv
|
20 |
+
- downloaded_history/BTC_USDT_5m_2020-01-01_2024-07-25.csv
|
21 |
+
Model trained. RMSE: 77.3184
|
22 |
+
gitpod /workspace/CryptoForex-Trader-Framework/CCXT_ICHIMOKU/julie_scanner (main) $ python bluewenne8.py --timeframe 1d --use-existing
|
23 |
+
Using the following BTC-related files for prediction:
|
24 |
+
- downloaded_history/BTC_USDT_15m_2020-01-01_2024-07-25.csv
|
25 |
+
- downloaded_history/BTC_USDT_1d_2020-01-01_2024-07-25.csv
|
26 |
+
- downloaded_history/BTC_USDT_1h_2020-01-01_2024-07-25.csv
|
27 |
+
- downloaded_history/BTC_USDT_1m_2020-01-01_2024-07-25.csv
|
28 |
+
- downloaded_history/BTC_USDT_4h_2020-01-01_2024-07-25.csv
|
29 |
+
- downloaded_history/BTC_USDT_5m_2020-01-01_2024-07-25.csv
|
30 |
+
gitpod /workspace/CryptoForex-Trader-Framework/CCXT_ICHIMOKU/julie_scanner (main) $
|
31 |
+
|
BTC_USDT_15m_2020-01-01_2024-07-25.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ece2e5e706f3ecaca7dbeaeb0126c879532c232d911381269d967240b6cd7346
|
3 |
+
size 10583706
|
BTC_USDT_1d_2020-01-01_2024-07-25.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
BTC_USDT_1h_2020-01-01_2024-07-25.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
BTC_USDT_1m_2020-01-01_2024-07-25.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:caa7fcf77ec4172e8afbf5aa9027c85273039d6d3f1562b0a184a64c9abf4aaa
|
3 |
+
size 156083703
|
BTC_USDT_4h_2020-01-01_2024-07-25.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
BTC_USDT_5m_2020-01-01_2024-07-25.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d223f6e48d10b29965c158d33d067b88f89e78b4771311a733d5524b7fe39c32
|
3 |
+
size 31538522
|
bluewenne8.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ccxt
|
2 |
+
import sys
|
3 |
+
import os
|
4 |
+
import argparse
|
5 |
+
import time
|
6 |
+
from datetime import datetime, timezone
|
7 |
+
import pytz
|
8 |
+
import threading
|
9 |
+
import csv
|
10 |
+
import pandas as pd
|
11 |
+
from sklearn.model_selection import train_test_split
|
12 |
+
from sklearn.ensemble import RandomForestRegressor
|
13 |
+
from sklearn.preprocessing import StandardScaler
|
14 |
+
from sklearn.metrics import mean_squared_error
|
15 |
+
import joblib
|
16 |
+
|
17 |
+
def fetch_markets(exchange):
|
18 |
+
try:
|
19 |
+
markets = exchange.fetch_markets()
|
20 |
+
symbols = [market['symbol'] for market in markets if market['spot'] and market['symbol'].endswith('/USDT')]
|
21 |
+
return symbols
|
22 |
+
except (ccxt.ExchangeError, ccxt.NetworkError, ccxt.DDoSProtection) as e:
|
23 |
+
print(f"Exchange error: {str(e)}")
|
24 |
+
os.kill(os.getpid(), 9)
|
25 |
+
sys.exit(-999)
|
26 |
+
|
27 |
+
def fetch_ohlcv(exchange, symbol, timeframe, limit=1000):
|
28 |
+
try:
|
29 |
+
all_candles = []
|
30 |
+
since = exchange.parse8601('2020-01-01T00:00:00Z') # Start date can be adjusted
|
31 |
+
while True:
|
32 |
+
candles = exchange.fetch_ohlcv(symbol, timeframe, since=since, limit=limit)
|
33 |
+
if not candles:
|
34 |
+
break
|
35 |
+
all_candles.extend(candles)
|
36 |
+
since = candles[-1][0] + 1
|
37 |
+
if len(candles) < limit:
|
38 |
+
break
|
39 |
+
return all_candles
|
40 |
+
except Exception as e:
|
41 |
+
print(f"Error fetching OHLCV data for {symbol}: {str(e)}")
|
42 |
+
return []
|
43 |
+
|
44 |
+
def fetch_current_price(exchange, symbol):
|
45 |
+
try:
|
46 |
+
ticker = exchange.fetch_ticker(symbol)
|
47 |
+
return ticker['ask'] if 'ask' in ticker else None
|
48 |
+
except Exception as e:
|
49 |
+
print(f"Error fetching current price for {symbol}: {str(e)}")
|
50 |
+
return None
|
51 |
+
|
52 |
+
def format_candle_time(timestamp):
|
53 |
+
return datetime.fromtimestamp(timestamp / 1000, tz=timezone.utc).strftime('%Y-%m-%d %H:%M:%S')
|
54 |
+
|
55 |
+
def save_history_to_file(symbol, timeframe, ohlcv):
|
56 |
+
directory = "downloaded_history"
|
57 |
+
if not os.path.exists(directory):
|
58 |
+
os.makedirs(directory)
|
59 |
+
|
60 |
+
if not ohlcv:
|
61 |
+
print(f"No OHLCV data to save for {symbol}")
|
62 |
+
return
|
63 |
+
|
64 |
+
start_date = format_candle_time(ohlcv[0][0]).split()[0]
|
65 |
+
end_date = format_candle_time(ohlcv[-1][0]).split()[0]
|
66 |
+
filename = (f"{directory}/{symbol.replace('/', '_')}_{timeframe}_{start_date}_{end_date}.csv").replace(" ", "_").replace(":", "-")
|
67 |
+
|
68 |
+
with open(filename, 'w', newline='') as csvfile:
|
69 |
+
writer = csv.writer(csvfile)
|
70 |
+
writer.writerow(['Timestamp', 'Open', 'High', 'Low', 'Close', 'Volume'])
|
71 |
+
for candle in ohlcv:
|
72 |
+
timestamp, open_price, high_price, low_price, close_price, volume = candle
|
73 |
+
writer.writerow([format_candle_time(timestamp), open_price, high_price, low_price, close_price, volume])
|
74 |
+
|
75 |
+
print(f"Saved history to {filename}")
|
76 |
+
|
77 |
+
def load_data_from_files(directory, symbol_filter=None):
|
78 |
+
all_data = []
|
79 |
+
filenames = []
|
80 |
+
for filename in os.listdir(directory):
|
81 |
+
if filename.endswith(".csv"):
|
82 |
+
if symbol_filter and not filename.startswith(symbol_filter):
|
83 |
+
continue # Skip files that do not start with the symbol filter
|
84 |
+
filepath = os.path.join(directory, filename)
|
85 |
+
df = pd.read_csv(filepath)
|
86 |
+
df['symbol'] = filename.split('_')[0] # Adjust this if your filenames have different formats
|
87 |
+
timeframe = filename.split('_')[1] # Extract timeframe from filename
|
88 |
+
df['Timeframe'] = timeframe
|
89 |
+
all_data.append(df)
|
90 |
+
filenames.append(filepath)
|
91 |
+
return pd.concat(all_data, ignore_index=True) if all_data else pd.DataFrame(), filenames
|
92 |
+
|
93 |
+
def preprocess_data(df):
|
94 |
+
df['Timestamp'] = pd.to_datetime(df['Timestamp'])
|
95 |
+
df.set_index('Timestamp', inplace=True)
|
96 |
+
df.sort_index(inplace=True)
|
97 |
+
df['Target'] = df['Close'].shift(-1)
|
98 |
+
df.dropna(inplace=True)
|
99 |
+
|
100 |
+
X = df[['Open', 'High', 'Low', 'Close', 'Volume']]
|
101 |
+
y = df['Target']
|
102 |
+
|
103 |
+
return X, y
|
104 |
+
|
105 |
+
def train_model(X, y):
|
106 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
107 |
+
scaler = StandardScaler()
|
108 |
+
X_train_scaled = scaler.fit_transform(X_train)
|
109 |
+
X_test_scaled = scaler.transform(X_test)
|
110 |
+
|
111 |
+
model = RandomForestRegressor(n_estimators=100, random_state=42)
|
112 |
+
model.fit(X_train_scaled, y_train)
|
113 |
+
|
114 |
+
y_pred = model.predict(X_test_scaled)
|
115 |
+
mse = mean_squared_error(y_test, y_pred)
|
116 |
+
rmse = mse**0.5
|
117 |
+
print(f"Model trained. RMSE: {rmse:.4f}")
|
118 |
+
|
119 |
+
return model, scaler
|
120 |
+
|
121 |
+
def predict_next_candle(model, scaler, data):
|
122 |
+
data_scaled = scaler.transform(data[['Open', 'High', 'Low', 'Close', 'Volume']])
|
123 |
+
prediction = model.predict(data_scaled)
|
124 |
+
return prediction
|
125 |
+
|
126 |
+
def analyze_symbol(exchange, symbol, timeframe, output_file):
|
127 |
+
try:
|
128 |
+
ohlcv = fetch_ohlcv(exchange, symbol, timeframe)
|
129 |
+
if not ohlcv:
|
130 |
+
return
|
131 |
+
|
132 |
+
save_history_to_file(symbol, timeframe, ohlcv)
|
133 |
+
|
134 |
+
max_candle = max(ohlcv, key=lambda x: x[2] - x[3])
|
135 |
+
open_price = max_candle[1]
|
136 |
+
close_price = max_candle[4]
|
137 |
+
highest_price = max_candle[2]
|
138 |
+
lowest_price = max_candle[3]
|
139 |
+
timestamp = max_candle[0]
|
140 |
+
candle_date_time = format_candle_time(timestamp)
|
141 |
+
|
142 |
+
greatest_candle_info = (
|
143 |
+
f"Symbol: {symbol}, Timeframe: {timeframe}, "
|
144 |
+
f"Open: {open_price:.4f}, Close: {close_price:.4f}, "
|
145 |
+
f"High: {highest_price:.4f}, Low: {lowest_price:.4f}, "
|
146 |
+
f"Range: {highest_price - lowest_price:.4f}, "
|
147 |
+
f"Greatest Candle DateTime: {candle_date_time}\n"
|
148 |
+
)
|
149 |
+
|
150 |
+
current_price = fetch_current_price(exchange, symbol)
|
151 |
+
if current_price is None:
|
152 |
+
return
|
153 |
+
|
154 |
+
current_time = datetime.now(pytz.UTC).strftime('%Y-%m-%d %H:%M:%S')
|
155 |
+
result = (
|
156 |
+
f"[{current_time}] {symbol} (BINANCE:{symbol.replace('/', '')}) "
|
157 |
+
f"Timeframe: {timeframe}, Current price: {current_price:.4f}\n"
|
158 |
+
f"{greatest_candle_info}\n"
|
159 |
+
)
|
160 |
+
print(result.strip())
|
161 |
+
|
162 |
+
with open(output_file, 'a') as f:
|
163 |
+
f.write(result)
|
164 |
+
|
165 |
+
except Exception as e:
|
166 |
+
print(f"Error analyzing symbol {symbol}: {str(e)}")
|
167 |
+
|
168 |
+
def write_predictions_to_file(output_file, predictions):
|
169 |
+
with open(output_file, 'a') as f:
|
170 |
+
for symbol, last_timestamp, timeframe, prediction in predictions:
|
171 |
+
# Convert integer timestamp to datetime if needed
|
172 |
+
if isinstance(last_timestamp, int):
|
173 |
+
last_timestamp = datetime.fromtimestamp(last_timestamp / 1000, tz=timezone.utc)
|
174 |
+
|
175 |
+
last_timestamp_str = last_timestamp.strftime('%Y-%m-%d %H:%M:%S')
|
176 |
+
f.write(f"Prediction for {symbol} ({timeframe}):\n")
|
177 |
+
f.write(f"- Last Timestamp: {last_timestamp_str}\n")
|
178 |
+
f.write(f"- Predicted Value: {prediction[-1]:.4f}\n") # Show the last prediction value
|
179 |
+
f.write("\n")
|
180 |
+
|
181 |
+
def worker(exchange, symbols, timeframe, output_file):
|
182 |
+
for symbol in symbols:
|
183 |
+
if symbol in fetch_markets(exchange):
|
184 |
+
analyze_symbol(exchange, symbol, timeframe, output_file)
|
185 |
+
else:
|
186 |
+
print(f"Skipping invalid symbol {symbol}")
|
187 |
+
|
188 |
+
def main():
|
189 |
+
parser = argparse.ArgumentParser(description='Show details of the greatest historical candle, save historical data, and train a model.')
|
190 |
+
parser.add_argument('--timeframe', type=str, required=True, help='Timeframe for the candlestick analysis')
|
191 |
+
parser.add_argument('--train', action='store_true', help='Train model using existing historical data')
|
192 |
+
parser.add_argument('--use-existing', action='store_true', help='Use existing historical data files')
|
193 |
+
args = parser.parse_args()
|
194 |
+
|
195 |
+
timeframe = args.timeframe
|
196 |
+
train_model_flag = args.train
|
197 |
+
use_existing_flag = args.use_existing
|
198 |
+
script_name = os.path.basename(__file__).split('.')[0]
|
199 |
+
result_directory = f"scan_results_{script_name}"
|
200 |
+
|
201 |
+
if not os.path.exists(result_directory):
|
202 |
+
os.makedirs(result_directory)
|
203 |
+
|
204 |
+
output_file = os.path.join(result_directory, f"{datetime.now(pytz.UTC).strftime('%Y%m%d_%H%M%S')}_{timeframe}_greatest_candles.txt")
|
205 |
+
|
206 |
+
if train_model_flag:
|
207 |
+
historical_data_dir = "downloaded_history"
|
208 |
+
symbol_filter = 'BTC_USDT' # Filter files that start with BTC_USDT
|
209 |
+
df, filenames = load_data_from_files(historical_data_dir, symbol_filter)
|
210 |
+
if df.empty:
|
211 |
+
print("No historical data found for training.")
|
212 |
+
return
|
213 |
+
|
214 |
+
print("Training model using the following BTC-related files:")
|
215 |
+
for filename in filenames:
|
216 |
+
print(f"- {filename}")
|
217 |
+
|
218 |
+
X, y = preprocess_data(df)
|
219 |
+
if X.empty or y.empty:
|
220 |
+
print("No valid data available for training.")
|
221 |
+
return
|
222 |
+
|
223 |
+
model, scaler = train_model(X, y)
|
224 |
+
|
225 |
+
joblib.dump(model, 'model.pkl')
|
226 |
+
joblib.dump(scaler, 'scaler.pkl')
|
227 |
+
|
228 |
+
elif use_existing_flag:
|
229 |
+
model = joblib.load('model.pkl')
|
230 |
+
scaler = joblib.load('scaler.pkl')
|
231 |
+
|
232 |
+
historical_data_dir = "downloaded_history"
|
233 |
+
symbol_filter = 'BTC_USDT' # Filter files that start with BTC_USDT
|
234 |
+
df, filenames = load_data_from_files(historical_data_dir, symbol_filter)
|
235 |
+
if df.empty:
|
236 |
+
print("No historical data found for prediction.")
|
237 |
+
return
|
238 |
+
|
239 |
+
print("Using the following BTC-related files for prediction:")
|
240 |
+
for filename in filenames:
|
241 |
+
print(f"- {filename}")
|
242 |
+
|
243 |
+
predictions = []
|
244 |
+
for symbol in df['symbol'].unique():
|
245 |
+
symbol_data = df[df['symbol'] == symbol]
|
246 |
+
timeframe = symbol_data['Timeframe'].iloc[0] # Get timeframe for prediction
|
247 |
+
last_timestamp = symbol_data.index[-1] # Get the last timestamp
|
248 |
+
next_candle_prediction = predict_next_candle(model, scaler, symbol_data)
|
249 |
+
predictions.append((symbol, last_timestamp, timeframe, next_candle_prediction))
|
250 |
+
|
251 |
+
write_predictions_to_file(output_file, predictions)
|
252 |
+
|
253 |
+
else:
|
254 |
+
exchange = ccxt.binance()
|
255 |
+
symbols = fetch_markets(exchange)
|
256 |
+
worker(exchange, symbols, timeframe, output_file)
|
257 |
+
|
258 |
+
if __name__ == "__main__":
|
259 |
+
main()
|
model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ca7bf25e061e840ba65bd4fa810e5723eebb24e31e6c42095a37e929c3bc5ba
|
3 |
+
size 22440675601
|
scaler.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bfeca91480e3af15a494593dbd3ae7443ab7d28a2ef9523ec4125dc37fea0a04
|
3 |
+
size 1071
|