sohui commited on
Commit
e0c1c56
1 Parent(s): 669a243

End of training

Browse files
Files changed (2) hide show
  1. README.md +50 -201
  2. adapter_model.safetensors +1 -1
README.md CHANGED
@@ -1,220 +1,69 @@
1
  ---
2
- library_name: peft
3
  base_model: distilgpt2
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
 
18
 
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
-
201
 
202
  ## Training procedure
203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204
 
205
- The following `bitsandbytes` quantization config was used during training:
206
- - quant_method: bitsandbytes
207
- - load_in_8bit: False
208
- - load_in_4bit: True
209
- - llm_int8_threshold: 6.0
210
- - llm_int8_skip_modules: None
211
- - llm_int8_enable_fp32_cpu_offload: False
212
- - llm_int8_has_fp16_weight: False
213
- - bnb_4bit_quant_type: nf4
214
- - bnb_4bit_use_double_quant: False
215
- - bnb_4bit_compute_dtype: float16
216
 
217
  ### Framework versions
218
 
219
-
220
- - PEFT 0.6.2
 
 
 
1
  ---
2
+ license: apache-2.0
3
  base_model: distilgpt2
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: nlpmodel
8
+ results: []
9
  ---
10
 
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
 
14
+ # nlpmodel
15
 
16
+ This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: nan
19
 
20
+ ## Model description
21
 
22
+ More information needed
23
 
24
+ ## Intended uses & limitations
25
 
26
+ More information needed
27
 
28
+ ## Training and evaluation data
29
 
30
+ More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  ## Training procedure
33
 
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0006
38
+ - train_batch_size: 4
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: constant
43
+ - num_epochs: 1
44
+
45
+ ### Training results
46
+
47
+ | Training Loss | Epoch | Step | Validation Loss |
48
+ |:-------------:|:-----:|:----:|:---------------:|
49
+ | 3.9619 | 0.0 | 100 | 3.1582 |
50
+ | 3.5241 | 0.01 | 200 | 3.0684 |
51
+ | 3.4974 | 0.01 | 300 | 3.0059 |
52
+ | 3.4257 | 0.02 | 400 | 2.9492 |
53
+ | 3.3314 | 0.02 | 500 | 2.9199 |
54
+ | 3.2822 | 0.03 | 600 | 2.9082 |
55
+ | 3.2201 | 0.03 | 700 | 2.8789 |
56
+ | 3.1969 | 0.04 | 800 | 2.8594 |
57
+ | 3.2104 | 0.04 | 900 | 2.8379 |
58
+ | 3.1859 | 0.05 | 1000 | 2.8262 |
59
+ | 3.1731 | 0.05 | 1100 | nan |
60
+ | 0.0 | 0.06 | 1200 | nan |
61
+ | 0.0 | 0.06 | 1300 | nan |
62
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
  ### Framework versions
65
 
66
+ - Transformers 4.35.2
67
+ - Pytorch 2.1.0+cu118
68
+ - Datasets 2.15.0
69
+ - Tokenizers 0.15.0
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:56b4b08ffa23926ff702bcbb17c54b51e724b98235967433a0a9dacd48e42b7b
3
  size 3259600
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69367d65dbb2a4e6770f6d9717d73f8f39e420c0ad9521d1a1943ad5b84e3def
3
  size 3259600