sohm commited on
Commit
13229b9
1 Parent(s): 066c083

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.48 +/- 1.54
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caeb303c5d150b4db713cc3ac13417929d8418a3943d1064004c98991f5c83a1
3
+ size 108071
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff835827280>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7ff83581fbd0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1676147448905072819,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAV53DPoCJDzyNzBA/V53DPoCJDzyNzBA/V53DPoCJDzyNzBA/V53DPoCJDzyNzBA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAb6tVvy6exj+5xAu+HEZXPziw0T9TXNo/ByKCvyMArT9zvlI//aoZv/G537xSIs4/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABXncM+gIkPPI3MED8LVL05QMstOWZ1ujtXncM+gIkPPI3MED8LVL05QMstOWZ1ujtXncM+gIkPPI3MED8LVL05QMstOWZ1ujtXncM+gIkPPI3MED8LVL05QMstOWZ1ujuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.38205978 0.00876081 0.5656212 ]\n [0.38205978 0.00876081 0.5656212 ]\n [0.38205978 0.00876081 0.5656212 ]\n [0.38205978 0.00876081 0.5656212 ]]",
60
+ "desired_goal": "[[-0.8346471 1.5517023 -0.13649262]\n [ 0.84091353 1.6381903 1.7059425 ]\n [-1.0166634 1.3515667 0.8232185 ]\n [-0.6002653 -0.02731034 1.6104224 ]]",
61
+ "observation": "[[3.8205978e-01 8.7608099e-03 5.6562120e-01 3.6111506e-04 1.6574282e-04\n 5.6902645e-03]\n [3.8205978e-01 8.7608099e-03 5.6562120e-01 3.6111506e-04 1.6574282e-04\n 5.6902645e-03]\n [3.8205978e-01 8.7608099e-03 5.6562120e-01 3.6111506e-04 1.6574282e-04\n 5.6902645e-03]\n [3.8205978e-01 8.7608099e-03 5.6562120e-01 3.6111506e-04 1.6574282e-04\n 5.6902645e-03]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9x+NOmJKpjpknpI+Wbr8va7CxL0KKk8+Y5CivBY1/rzKJ5k+CsaDvZAGEb2SpHg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.0010767 0.0012687 0.28636467]\n [-0.1234023 -0.09607445 0.2023088 ]\n [-0.01984424 -0.03103117 0.2991317 ]\n [-0.06434257 -0.03540665 0.24281529]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInYGRlzWRBMCUhpRSlIwBbJRLMowBdJRHQKgxNn5BTn91fZQoaAZoCWgPQwg8FXDP8wcQwJSGlFKUaBVLMmgWR0CoMOAvlEJCdX2UKGgGaAloD0MITFKZYg7CBcCUhpRSlGgVSzJoFkdAqDCIk3S8anV9lChoBmgJaA9DCFYo0v2c4gXAlIaUUpRoFUsyaBZHQKgwLmLcbit1fZQoaAZoCWgPQwiqnPaUnFP9v5SGlFKUaBVLMmgWR0CoMjBTGYKIdX2UKGgGaAloD0MINuZ1xCG7A8CUhpRSlGgVSzJoFkdAqDHZz3h4uHV9lChoBmgJaA9DCDZYOEnzJw7AlIaUUpRoFUsyaBZHQKgxgkPczqN1fZQoaAZoCWgPQwiSA3Y1eRoYwJSGlFKUaBVLMmgWR0CoMSgkTpPidX2UKGgGaAloD0MImDEFa5zNCMCUhpRSlGgVSzJoFkdAqDM0G/vfCXV9lChoBmgJaA9DCMPWbOUlLxDAlIaUUpRoFUsyaBZHQKgy3YvnKW91fZQoaAZoCWgPQwhR9pZyvpgDwJSGlFKUaBVLMmgWR0CoMoZElVtGdX2UKGgGaAloD0MIba0vEtpSFcCUhpRSlGgVSzJoFkdAqDIsV1wHaHV9lChoBmgJaA9DCLggW5avKxbAlIaUUpRoFUsyaBZHQKg0O2YOUdJ1fZQoaAZoCWgPQwjPu7GgMIgRwJSGlFKUaBVLMmgWR0CoM+TiKiwjdX2UKGgGaAloD0MIoBhZMsfy/L+UhpRSlGgVSzJoFkdAqDONqSHM2XV9lChoBmgJaA9DCKlNnNzvEAbAlIaUUpRoFUsyaBZHQKgzM4MnZ011fZQoaAZoCWgPQwh5knTN5NsHwJSGlFKUaBVLMmgWR0CoNT3+2mYTdX2UKGgGaAloD0MIWG/UCtM3CsCUhpRSlGgVSzJoFkdAqDTnkFOfunV9lChoBmgJaA9DCKN5AIv8egjAlIaUUpRoFUsyaBZHQKg0j/bTMJR1fZQoaAZoCWgPQwium1JeK2EQwJSGlFKUaBVLMmgWR0CoNDXlKbrkdX2UKGgGaAloD0MI56kOuRnODMCUhpRSlGgVSzJoFkdAqDZOuq3mWHV9lChoBmgJaA9DCGXggJauIAXAlIaUUpRoFUsyaBZHQKg1+IYWLxZ1fZQoaAZoCWgPQwi3f2WlSan/v5SGlFKUaBVLMmgWR0CoNaFLeyiVdX2UKGgGaAloD0MIqRJlbymn/r+UhpRSlGgVSzJoFkdAqDVHO8kD6nV9lChoBmgJaA9DCLTjht9NNwPAlIaUUpRoFUsyaBZHQKg3WdOIqLF1fZQoaAZoCWgPQwgv205bI+IAwJSGlFKUaBVLMmgWR0CoNwOkDZDidX2UKGgGaAloD0MIsn+eBgyyCMCUhpRSlGgVSzJoFkdAqDasWGh24nV9lChoBmgJaA9DCAA7N23GiQXAlIaUUpRoFUsyaBZHQKg2UpI+W4V1fZQoaAZoCWgPQwiUv3tHjckAwJSGlFKUaBVLMmgWR0CoOHI4VARkdX2UKGgGaAloD0MIgzRj0XSGFcCUhpRSlGgVSzJoFkdAqDgbwOOKfnV9lChoBmgJaA9DCMPwETEl8grAlIaUUpRoFUsyaBZHQKg3xEroW591fZQoaAZoCWgPQwj5LM+DuyMSwJSGlFKUaBVLMmgWR0CoN2px//eddX2UKGgGaAloD0MIlGx1OSXgE8CUhpRSlGgVSzJoFkdAqDlwBYFJQXV9lChoBmgJaA9DCJq2f2WlqQbAlIaUUpRoFUsyaBZHQKg5GXzlLe11fZQoaAZoCWgPQwgYsyWrIvwDwJSGlFKUaBVLMmgWR0CoOMH/1g6VdX2UKGgGaAloD0MIeO49XHIcB8CUhpRSlGgVSzJoFkdAqDhn13+uNnV9lChoBmgJaA9DCPZCAdvBKALAlIaUUpRoFUsyaBZHQKg6bfO2RaJ1fZQoaAZoCWgPQwgXDRmPUskIwJSGlFKUaBVLMmgWR0CoOhdyLhrFdX2UKGgGaAloD0MIQdZTq69OAcCUhpRSlGgVSzJoFkdAqDnAFHJ9zHV9lChoBmgJaA9DCNUmTu53+BDAlIaUUpRoFUsyaBZHQKg5ZhAnlXB1fZQoaAZoCWgPQwgHJjeKrIUQwJSGlFKUaBVLMmgWR0CoO2/5k9U0dX2UKGgGaAloD0MI8kBkkSa+A8CUhpRSlGgVSzJoFkdAqDsZcophF3V9lChoBmgJaA9DCAK7mjxllRPAlIaUUpRoFUsyaBZHQKg6wde6Zpl1fZQoaAZoCWgPQwgHQx1WuGUCwJSGlFKUaBVLMmgWR0CoOmf4h2W6dX2UKGgGaAloD0MItFa0Oc5ND8CUhpRSlGgVSzJoFkdAqDx1H8TBZnV9lChoBmgJaA9DCJRqn47H7ArAlIaUUpRoFUsyaBZHQKg8Hq7iADt1fZQoaAZoCWgPQwjf/IaJBqkBwJSGlFKUaBVLMmgWR0CoO8c0UGmldX2UKGgGaAloD0MIwcQfRZ25AMCUhpRSlGgVSzJoFkdAqDttPnB+F3V9lChoBmgJaA9DCFhZ2xSP6wnAlIaUUpRoFUsyaBZHQKg9c6mO2iN1fZQoaAZoCWgPQwj/PA0YJN0QwJSGlFKUaBVLMmgWR0CoPR1p9JBgdX2UKGgGaAloD0MIv/G1Z5akCsCUhpRSlGgVSzJoFkdAqDzF1U2kz3V9lChoBmgJaA9DCF+Zt+o61ADAlIaUUpRoFUsyaBZHQKg8a9EkSmJ1fZQoaAZoCWgPQwgYldQJaKIHwJSGlFKUaBVLMmgWR0CoPvqekHlfdX2UKGgGaAloD0MIio7k8h/SDcCUhpRSlGgVSzJoFkdAqD6lGd7OV3V9lChoBmgJaA9DCI/ecB+5dQjAlIaUUpRoFUsyaBZHQKg+TpVS4vx1fZQoaAZoCWgPQwgPtW0YBUEQwJSGlFKUaBVLMmgWR0CoPfUi6g/UdX2UKGgGaAloD0MI8kQQ5+EEBcCUhpRSlGgVSzJoFkdAqEB+d7OVxHV9lChoBmgJaA9DCI5Z9iSw+QnAlIaUUpRoFUsyaBZHQKhAKhTwUg11fZQoaAZoCWgPQwh5Bg39ExwFwJSGlFKUaBVLMmgWR0CoP9MUqQRxdX2UKGgGaAloD0MIPdUhN8OtCcCUhpRSlGgVSzJoFkdAqD95wMpgC3V9lChoBmgJaA9DCONxUS0i6gPAlIaUUpRoFUsyaBZHQKhCENEPUa11fZQoaAZoCWgPQwi610l9WXoHwJSGlFKUaBVLMmgWR0CoQbrvsqrjdX2UKGgGaAloD0MIelImNbTBEsCUhpRSlGgVSzJoFkdAqEFkGFBY3nV9lChoBmgJaA9DCPpEniRdEwrAlIaUUpRoFUsyaBZHQKhBCp6yB091fZQoaAZoCWgPQwi5Us+CUB4EwJSGlFKUaBVLMmgWR0CoQ8zqB3A3dX2UKGgGaAloD0MInIpUGFs4EcCUhpRSlGgVSzJoFkdAqEN37cfvF3V9lChoBmgJaA9DCIl46/zb5QLAlIaUUpRoFUsyaBZHQKhDIT8HfMx1fZQoaAZoCWgPQwicM6K0NxgBwJSGlFKUaBVLMmgWR0CoQsgCwKSgdX2UKGgGaAloD0MI8n1xqUr7DsCUhpRSlGgVSzJoFkdAqEWRQtSQ5nV9lChoBmgJaA9DCG+BBMWPsf2/lIaUUpRoFUsyaBZHQKhFPAzpHI91fZQoaAZoCWgPQwhaLhud8xMRwJSGlFKUaBVLMmgWR0CoROWM0gr6dX2UKGgGaAloD0MICMiXUMEhE8CUhpRSlGgVSzJoFkdAqESMauOjqXV9lChoBmgJaA9DCANgPIOGng7AlIaUUpRoFUsyaBZHQKhHV4GD+R51fZQoaAZoCWgPQwgyA5Xx78MSwJSGlFKUaBVLMmgWR0CoRwH+yZ8bdX2UKGgGaAloD0MIErwhjQrcB8CUhpRSlGgVSzJoFkdAqEar+o99t3V9lChoBmgJaA9DCJbs2AjEqw/AlIaUUpRoFUsyaBZHQKhGUyhzvJB1fZQoaAZoCWgPQwjCbAIMy78SwJSGlFKUaBVLMmgWR0CoSOVyvLX+dX2UKGgGaAloD0MIZkrrbwngAMCUhpRSlGgVSzJoFkdAqEiPDLr5ZnV9lChoBmgJaA9DCCbirfNv1wPAlIaUUpRoFUsyaBZHQKhIN26kIop1fZQoaAZoCWgPQwhLOsrBbGIIwJSGlFKUaBVLMmgWR0CoR90qH447dX2UKGgGaAloD0MIILJIE++A/b+UhpRSlGgVSzJoFkdAqEnktCiRGXV9lChoBmgJaA9DCF1vm6kQrwrAlIaUUpRoFUsyaBZHQKhJjm+0w8J1fZQoaAZoCWgPQwhWLekoBxMKwJSGlFKUaBVLMmgWR0CoSTbeEZivdX2UKGgGaAloD0MIcGHdeHekBsCUhpRSlGgVSzJoFkdAqEjcspXp4nV9lChoBmgJaA9DCCbHndLBeg3AlIaUUpRoFUsyaBZHQKhK706HTJB1fZQoaAZoCWgPQwhMUwQ4vcsGwJSGlFKUaBVLMmgWR0CoSpkVN5+pdX2UKGgGaAloD0MII/PIHwzcAcCUhpRSlGgVSzJoFkdAqEpB1cMVlHV9lChoBmgJaA9DCKrzqPi/wxHAlIaUUpRoFUsyaBZHQKhJ6ALApKB1fZQoaAZoCWgPQwi/ZOPBFrsGwJSGlFKUaBVLMmgWR0CoS/OPvKEGdX2UKGgGaAloD0MI46dxb35TEsCUhpRSlGgVSzJoFkdAqEudPP9k0HV9lChoBmgJaA9DCLJoOjsZPATAlIaUUpRoFUsyaBZHQKhLRbUPQOZ1fZQoaAZoCWgPQwjoLR7ecyAHwJSGlFKUaBVLMmgWR0CoSuvkRzzVdX2UKGgGaAloD0MIWW3+X3U0EcCUhpRSlGgVSzJoFkdAqEz0oWpIc3V9lChoBmgJaA9DCA+XHHdKhwvAlIaUUpRoFUsyaBZHQKhMniZOSGJ1fZQoaAZoCWgPQwhP6zao/TYEwJSGlFKUaBVLMmgWR0CoTEaGpMpPdX2UKGgGaAloD0MIbOwS1VvDCsCUhpRSlGgVSzJoFkdAqEvsYO2AoXV9lChoBmgJaA9DCNUHkncOZQHAlIaUUpRoFUsyaBZHQKhN6pXp4bF1fZQoaAZoCWgPQwi8kXnkDyYFwJSGlFKUaBVLMmgWR0CoTZQh4dIYdX2UKGgGaAloD0MIG2MnvARHC8CUhpRSlGgVSzJoFkdAqE08qaw2VHV9lChoBmgJaA9DCIC5Fi1A+xTAlIaUUpRoFUsyaBZHQKhM4oXsPat1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e78ffbe26ec955cd6e0d1b46009ca3e0161c070cce6c5c77bcc1a186072c921
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dc771e81896152881812ad4841d0515f22e436e877351ece3467b1820072352
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff835827280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff83581fbd0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676147448905072819, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAV53DPoCJDzyNzBA/V53DPoCJDzyNzBA/V53DPoCJDzyNzBA/V53DPoCJDzyNzBA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAb6tVvy6exj+5xAu+HEZXPziw0T9TXNo/ByKCvyMArT9zvlI//aoZv/G537xSIs4/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABXncM+gIkPPI3MED8LVL05QMstOWZ1ujtXncM+gIkPPI3MED8LVL05QMstOWZ1ujtXncM+gIkPPI3MED8LVL05QMstOWZ1ujtXncM+gIkPPI3MED8LVL05QMstOWZ1ujuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.38205978 0.00876081 0.5656212 ]\n [0.38205978 0.00876081 0.5656212 ]\n [0.38205978 0.00876081 0.5656212 ]\n [0.38205978 0.00876081 0.5656212 ]]", "desired_goal": "[[-0.8346471 1.5517023 -0.13649262]\n [ 0.84091353 1.6381903 1.7059425 ]\n [-1.0166634 1.3515667 0.8232185 ]\n [-0.6002653 -0.02731034 1.6104224 ]]", "observation": "[[3.8205978e-01 8.7608099e-03 5.6562120e-01 3.6111506e-04 1.6574282e-04\n 5.6902645e-03]\n [3.8205978e-01 8.7608099e-03 5.6562120e-01 3.6111506e-04 1.6574282e-04\n 5.6902645e-03]\n [3.8205978e-01 8.7608099e-03 5.6562120e-01 3.6111506e-04 1.6574282e-04\n 5.6902645e-03]\n [3.8205978e-01 8.7608099e-03 5.6562120e-01 3.6111506e-04 1.6574282e-04\n 5.6902645e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9x+NOmJKpjpknpI+Wbr8va7CxL0KKk8+Y5CivBY1/rzKJ5k+CsaDvZAGEb2SpHg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0010767 0.0012687 0.28636467]\n [-0.1234023 -0.09607445 0.2023088 ]\n [-0.01984424 -0.03103117 0.2991317 ]\n [-0.06434257 -0.03540665 0.24281529]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInYGRlzWRBMCUhpRSlIwBbJRLMowBdJRHQKgxNn5BTn91fZQoaAZoCWgPQwg8FXDP8wcQwJSGlFKUaBVLMmgWR0CoMOAvlEJCdX2UKGgGaAloD0MITFKZYg7CBcCUhpRSlGgVSzJoFkdAqDCIk3S8anV9lChoBmgJaA9DCFYo0v2c4gXAlIaUUpRoFUsyaBZHQKgwLmLcbit1fZQoaAZoCWgPQwiqnPaUnFP9v5SGlFKUaBVLMmgWR0CoMjBTGYKIdX2UKGgGaAloD0MINuZ1xCG7A8CUhpRSlGgVSzJoFkdAqDHZz3h4uHV9lChoBmgJaA9DCDZYOEnzJw7AlIaUUpRoFUsyaBZHQKgxgkPczqN1fZQoaAZoCWgPQwiSA3Y1eRoYwJSGlFKUaBVLMmgWR0CoMSgkTpPidX2UKGgGaAloD0MImDEFa5zNCMCUhpRSlGgVSzJoFkdAqDM0G/vfCXV9lChoBmgJaA9DCMPWbOUlLxDAlIaUUpRoFUsyaBZHQKgy3YvnKW91fZQoaAZoCWgPQwhR9pZyvpgDwJSGlFKUaBVLMmgWR0CoMoZElVtGdX2UKGgGaAloD0MIba0vEtpSFcCUhpRSlGgVSzJoFkdAqDIsV1wHaHV9lChoBmgJaA9DCLggW5avKxbAlIaUUpRoFUsyaBZHQKg0O2YOUdJ1fZQoaAZoCWgPQwjPu7GgMIgRwJSGlFKUaBVLMmgWR0CoM+TiKiwjdX2UKGgGaAloD0MIoBhZMsfy/L+UhpRSlGgVSzJoFkdAqDONqSHM2XV9lChoBmgJaA9DCKlNnNzvEAbAlIaUUpRoFUsyaBZHQKgzM4MnZ011fZQoaAZoCWgPQwh5knTN5NsHwJSGlFKUaBVLMmgWR0CoNT3+2mYTdX2UKGgGaAloD0MIWG/UCtM3CsCUhpRSlGgVSzJoFkdAqDTnkFOfunV9lChoBmgJaA9DCKN5AIv8egjAlIaUUpRoFUsyaBZHQKg0j/bTMJR1fZQoaAZoCWgPQwium1JeK2EQwJSGlFKUaBVLMmgWR0CoNDXlKbrkdX2UKGgGaAloD0MI56kOuRnODMCUhpRSlGgVSzJoFkdAqDZOuq3mWHV9lChoBmgJaA9DCGXggJauIAXAlIaUUpRoFUsyaBZHQKg1+IYWLxZ1fZQoaAZoCWgPQwi3f2WlSan/v5SGlFKUaBVLMmgWR0CoNaFLeyiVdX2UKGgGaAloD0MIqRJlbymn/r+UhpRSlGgVSzJoFkdAqDVHO8kD6nV9lChoBmgJaA9DCLTjht9NNwPAlIaUUpRoFUsyaBZHQKg3WdOIqLF1fZQoaAZoCWgPQwgv205bI+IAwJSGlFKUaBVLMmgWR0CoNwOkDZDidX2UKGgGaAloD0MIsn+eBgyyCMCUhpRSlGgVSzJoFkdAqDasWGh24nV9lChoBmgJaA9DCAA7N23GiQXAlIaUUpRoFUsyaBZHQKg2UpI+W4V1fZQoaAZoCWgPQwiUv3tHjckAwJSGlFKUaBVLMmgWR0CoOHI4VARkdX2UKGgGaAloD0MIgzRj0XSGFcCUhpRSlGgVSzJoFkdAqDgbwOOKfnV9lChoBmgJaA9DCMPwETEl8grAlIaUUpRoFUsyaBZHQKg3xEroW591fZQoaAZoCWgPQwj5LM+DuyMSwJSGlFKUaBVLMmgWR0CoN2px//eddX2UKGgGaAloD0MIlGx1OSXgE8CUhpRSlGgVSzJoFkdAqDlwBYFJQXV9lChoBmgJaA9DCJq2f2WlqQbAlIaUUpRoFUsyaBZHQKg5GXzlLe11fZQoaAZoCWgPQwgYsyWrIvwDwJSGlFKUaBVLMmgWR0CoOMH/1g6VdX2UKGgGaAloD0MIeO49XHIcB8CUhpRSlGgVSzJoFkdAqDhn13+uNnV9lChoBmgJaA9DCPZCAdvBKALAlIaUUpRoFUsyaBZHQKg6bfO2RaJ1fZQoaAZoCWgPQwgXDRmPUskIwJSGlFKUaBVLMmgWR0CoOhdyLhrFdX2UKGgGaAloD0MIQdZTq69OAcCUhpRSlGgVSzJoFkdAqDnAFHJ9zHV9lChoBmgJaA9DCNUmTu53+BDAlIaUUpRoFUsyaBZHQKg5ZhAnlXB1fZQoaAZoCWgPQwgHJjeKrIUQwJSGlFKUaBVLMmgWR0CoO2/5k9U0dX2UKGgGaAloD0MI8kBkkSa+A8CUhpRSlGgVSzJoFkdAqDsZcophF3V9lChoBmgJaA9DCAK7mjxllRPAlIaUUpRoFUsyaBZHQKg6wde6Zpl1fZQoaAZoCWgPQwgHQx1WuGUCwJSGlFKUaBVLMmgWR0CoOmf4h2W6dX2UKGgGaAloD0MItFa0Oc5ND8CUhpRSlGgVSzJoFkdAqDx1H8TBZnV9lChoBmgJaA9DCJRqn47H7ArAlIaUUpRoFUsyaBZHQKg8Hq7iADt1fZQoaAZoCWgPQwjf/IaJBqkBwJSGlFKUaBVLMmgWR0CoO8c0UGmldX2UKGgGaAloD0MIwcQfRZ25AMCUhpRSlGgVSzJoFkdAqDttPnB+F3V9lChoBmgJaA9DCFhZ2xSP6wnAlIaUUpRoFUsyaBZHQKg9c6mO2iN1fZQoaAZoCWgPQwj/PA0YJN0QwJSGlFKUaBVLMmgWR0CoPR1p9JBgdX2UKGgGaAloD0MIv/G1Z5akCsCUhpRSlGgVSzJoFkdAqDzF1U2kz3V9lChoBmgJaA9DCF+Zt+o61ADAlIaUUpRoFUsyaBZHQKg8a9EkSmJ1fZQoaAZoCWgPQwgYldQJaKIHwJSGlFKUaBVLMmgWR0CoPvqekHlfdX2UKGgGaAloD0MIio7k8h/SDcCUhpRSlGgVSzJoFkdAqD6lGd7OV3V9lChoBmgJaA9DCI/ecB+5dQjAlIaUUpRoFUsyaBZHQKg+TpVS4vx1fZQoaAZoCWgPQwgPtW0YBUEQwJSGlFKUaBVLMmgWR0CoPfUi6g/UdX2UKGgGaAloD0MI8kQQ5+EEBcCUhpRSlGgVSzJoFkdAqEB+d7OVxHV9lChoBmgJaA9DCI5Z9iSw+QnAlIaUUpRoFUsyaBZHQKhAKhTwUg11fZQoaAZoCWgPQwh5Bg39ExwFwJSGlFKUaBVLMmgWR0CoP9MUqQRxdX2UKGgGaAloD0MIPdUhN8OtCcCUhpRSlGgVSzJoFkdAqD95wMpgC3V9lChoBmgJaA9DCONxUS0i6gPAlIaUUpRoFUsyaBZHQKhCENEPUa11fZQoaAZoCWgPQwi610l9WXoHwJSGlFKUaBVLMmgWR0CoQbrvsqrjdX2UKGgGaAloD0MIelImNbTBEsCUhpRSlGgVSzJoFkdAqEFkGFBY3nV9lChoBmgJaA9DCPpEniRdEwrAlIaUUpRoFUsyaBZHQKhBCp6yB091fZQoaAZoCWgPQwi5Us+CUB4EwJSGlFKUaBVLMmgWR0CoQ8zqB3A3dX2UKGgGaAloD0MInIpUGFs4EcCUhpRSlGgVSzJoFkdAqEN37cfvF3V9lChoBmgJaA9DCIl46/zb5QLAlIaUUpRoFUsyaBZHQKhDIT8HfMx1fZQoaAZoCWgPQwicM6K0NxgBwJSGlFKUaBVLMmgWR0CoQsgCwKSgdX2UKGgGaAloD0MI8n1xqUr7DsCUhpRSlGgVSzJoFkdAqEWRQtSQ5nV9lChoBmgJaA9DCG+BBMWPsf2/lIaUUpRoFUsyaBZHQKhFPAzpHI91fZQoaAZoCWgPQwhaLhud8xMRwJSGlFKUaBVLMmgWR0CoROWM0gr6dX2UKGgGaAloD0MICMiXUMEhE8CUhpRSlGgVSzJoFkdAqESMauOjqXV9lChoBmgJaA9DCANgPIOGng7AlIaUUpRoFUsyaBZHQKhHV4GD+R51fZQoaAZoCWgPQwgyA5Xx78MSwJSGlFKUaBVLMmgWR0CoRwH+yZ8bdX2UKGgGaAloD0MIErwhjQrcB8CUhpRSlGgVSzJoFkdAqEar+o99t3V9lChoBmgJaA9DCJbs2AjEqw/AlIaUUpRoFUsyaBZHQKhGUyhzvJB1fZQoaAZoCWgPQwjCbAIMy78SwJSGlFKUaBVLMmgWR0CoSOVyvLX+dX2UKGgGaAloD0MIZkrrbwngAMCUhpRSlGgVSzJoFkdAqEiPDLr5ZnV9lChoBmgJaA9DCCbirfNv1wPAlIaUUpRoFUsyaBZHQKhIN26kIop1fZQoaAZoCWgPQwhLOsrBbGIIwJSGlFKUaBVLMmgWR0CoR90qH447dX2UKGgGaAloD0MIILJIE++A/b+UhpRSlGgVSzJoFkdAqEnktCiRGXV9lChoBmgJaA9DCF1vm6kQrwrAlIaUUpRoFUsyaBZHQKhJjm+0w8J1fZQoaAZoCWgPQwhWLekoBxMKwJSGlFKUaBVLMmgWR0CoSTbeEZivdX2UKGgGaAloD0MIcGHdeHekBsCUhpRSlGgVSzJoFkdAqEjcspXp4nV9lChoBmgJaA9DCCbHndLBeg3AlIaUUpRoFUsyaBZHQKhK706HTJB1fZQoaAZoCWgPQwhMUwQ4vcsGwJSGlFKUaBVLMmgWR0CoSpkVN5+pdX2UKGgGaAloD0MII/PIHwzcAcCUhpRSlGgVSzJoFkdAqEpB1cMVlHV9lChoBmgJaA9DCKrzqPi/wxHAlIaUUpRoFUsyaBZHQKhJ6ALApKB1fZQoaAZoCWgPQwi/ZOPBFrsGwJSGlFKUaBVLMmgWR0CoS/OPvKEGdX2UKGgGaAloD0MI46dxb35TEsCUhpRSlGgVSzJoFkdAqEudPP9k0HV9lChoBmgJaA9DCLJoOjsZPATAlIaUUpRoFUsyaBZHQKhLRbUPQOZ1fZQoaAZoCWgPQwjoLR7ecyAHwJSGlFKUaBVLMmgWR0CoSuvkRzzVdX2UKGgGaAloD0MIWW3+X3U0EcCUhpRSlGgVSzJoFkdAqEz0oWpIc3V9lChoBmgJaA9DCA+XHHdKhwvAlIaUUpRoFUsyaBZHQKhMniZOSGJ1fZQoaAZoCWgPQwhP6zao/TYEwJSGlFKUaBVLMmgWR0CoTEaGpMpPdX2UKGgGaAloD0MIbOwS1VvDCsCUhpRSlGgVSzJoFkdAqEvsYO2AoXV9lChoBmgJaA9DCNUHkncOZQHAlIaUUpRoFUsyaBZHQKhN6pXp4bF1fZQoaAZoCWgPQwi8kXnkDyYFwJSGlFKUaBVLMmgWR0CoTZQh4dIYdX2UKGgGaAloD0MIG2MnvARHC8CUhpRSlGgVSzJoFkdAqE08qaw2VHV9lChoBmgJaA9DCIC5Fi1A+xTAlIaUUpRoFUsyaBZHQKhM4oXsPat1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (808 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.4805650372058152, "std_reward": 1.5407226120909558, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-11T21:22:44.835920"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2881dffc13a96567daef42138451fc831d236a904b18f0b8564fb908289febed
3
+ size 3056