sohith18 commited on
Commit
7b960be
·
verified ·
1 Parent(s): 999c0be

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-VL-3B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
adapter_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-VL-3B-Instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 16,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "o_proj",
28
+ "mlp.0",
29
+ "attn.proj",
30
+ "k_proj",
31
+ "qkv",
32
+ "up_proj",
33
+ "mlp.2",
34
+ "gate_proj",
35
+ "v_proj",
36
+ "down_proj",
37
+ "q_proj"
38
+ ],
39
+ "task_type": "CAUSAL_LM",
40
+ "trainable_token_indices": null,
41
+ "use_dora": false,
42
+ "use_rslora": false
43
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:052ebd1c2fb5a873013df45a5c99d86ec7738eb619f9ff6b87697cbad1d01743
3
+ size 165563976
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db6cd4182612c878c11cba945d1e53a7d687e3006c06ae713a378392efdf36bf
3
+ size 242125702
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d2981a2c1a2c931e8522f662b0973c237ec460f020d279c0e6ec88c5605303c
3
+ size 14244
scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3775eede80dfdfb6e17b357d769230edbfe7ad1cff7722fef04f9ab1cbe3b737
3
+ size 988
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42173a484c9de4700dbd289ab8f95576e2cd080b3bd422ce71a0de1c90ed04e3
3
+ size 1064
trainer_state.json ADDED
@@ -0,0 +1,784 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 5000,
3
+ "best_metric": 1.017230749130249,
4
+ "best_model_checkpoint": "/kaggle/working/qwen2vl-lora-kaggle-1-3b/checkpoint-5000",
5
+ "epoch": 1.7985611510791366,
6
+ "eval_steps": 100,
7
+ "global_step": 5000,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.03597122302158273,
14
+ "grad_norm": 4.838791370391846,
15
+ "learning_rate": 0.00019612,
16
+ "loss": 1.5148,
17
+ "step": 100
18
+ },
19
+ {
20
+ "epoch": 0.03597122302158273,
21
+ "eval_loss": 1.6787753105163574,
22
+ "eval_runtime": 221.0311,
23
+ "eval_samples_per_second": 6.284,
24
+ "eval_steps_per_second": 0.787,
25
+ "step": 100
26
+ },
27
+ {
28
+ "epoch": 0.07194244604316546,
29
+ "grad_norm": 4.567266464233398,
30
+ "learning_rate": 0.00019212000000000002,
31
+ "loss": 1.52,
32
+ "step": 200
33
+ },
34
+ {
35
+ "epoch": 0.07194244604316546,
36
+ "eval_loss": 1.5472114086151123,
37
+ "eval_runtime": 218.7801,
38
+ "eval_samples_per_second": 6.349,
39
+ "eval_steps_per_second": 0.795,
40
+ "step": 200
41
+ },
42
+ {
43
+ "epoch": 0.1079136690647482,
44
+ "grad_norm": 6.073286533355713,
45
+ "learning_rate": 0.00018816000000000001,
46
+ "loss": 1.4848,
47
+ "step": 300
48
+ },
49
+ {
50
+ "epoch": 0.1079136690647482,
51
+ "eval_loss": 1.5414568185806274,
52
+ "eval_runtime": 220.387,
53
+ "eval_samples_per_second": 6.303,
54
+ "eval_steps_per_second": 0.79,
55
+ "step": 300
56
+ },
57
+ {
58
+ "epoch": 0.14388489208633093,
59
+ "grad_norm": 4.657773971557617,
60
+ "learning_rate": 0.0001842,
61
+ "loss": 1.5882,
62
+ "step": 400
63
+ },
64
+ {
65
+ "epoch": 0.14388489208633093,
66
+ "eval_loss": 1.3667333126068115,
67
+ "eval_runtime": 218.501,
68
+ "eval_samples_per_second": 6.357,
69
+ "eval_steps_per_second": 0.796,
70
+ "step": 400
71
+ },
72
+ {
73
+ "epoch": 0.17985611510791366,
74
+ "grad_norm": 4.099836349487305,
75
+ "learning_rate": 0.00018020000000000002,
76
+ "loss": 1.4703,
77
+ "step": 500
78
+ },
79
+ {
80
+ "epoch": 0.17985611510791366,
81
+ "eval_loss": 1.3743242025375366,
82
+ "eval_runtime": 216.9007,
83
+ "eval_samples_per_second": 6.404,
84
+ "eval_steps_per_second": 0.802,
85
+ "step": 500
86
+ },
87
+ {
88
+ "epoch": 0.2158273381294964,
89
+ "grad_norm": 4.616134166717529,
90
+ "learning_rate": 0.0001762,
91
+ "loss": 1.4308,
92
+ "step": 600
93
+ },
94
+ {
95
+ "epoch": 0.2158273381294964,
96
+ "eval_loss": 1.385414481163025,
97
+ "eval_runtime": 216.2088,
98
+ "eval_samples_per_second": 6.424,
99
+ "eval_steps_per_second": 0.805,
100
+ "step": 600
101
+ },
102
+ {
103
+ "epoch": 0.2517985611510791,
104
+ "grad_norm": 3.2131996154785156,
105
+ "learning_rate": 0.0001722,
106
+ "loss": 1.448,
107
+ "step": 700
108
+ },
109
+ {
110
+ "epoch": 0.2517985611510791,
111
+ "eval_loss": 1.3619259595870972,
112
+ "eval_runtime": 216.2284,
113
+ "eval_samples_per_second": 6.424,
114
+ "eval_steps_per_second": 0.805,
115
+ "step": 700
116
+ },
117
+ {
118
+ "epoch": 0.28776978417266186,
119
+ "grad_norm": 5.4527082443237305,
120
+ "learning_rate": 0.0001682,
121
+ "loss": 1.3746,
122
+ "step": 800
123
+ },
124
+ {
125
+ "epoch": 0.28776978417266186,
126
+ "eval_loss": 1.3138333559036255,
127
+ "eval_runtime": 216.2051,
128
+ "eval_samples_per_second": 6.424,
129
+ "eval_steps_per_second": 0.805,
130
+ "step": 800
131
+ },
132
+ {
133
+ "epoch": 0.3237410071942446,
134
+ "grad_norm": 7.845854759216309,
135
+ "learning_rate": 0.0001642,
136
+ "loss": 1.323,
137
+ "step": 900
138
+ },
139
+ {
140
+ "epoch": 0.3237410071942446,
141
+ "eval_loss": 1.3179031610488892,
142
+ "eval_runtime": 215.9832,
143
+ "eval_samples_per_second": 6.431,
144
+ "eval_steps_per_second": 0.806,
145
+ "step": 900
146
+ },
147
+ {
148
+ "epoch": 0.3597122302158273,
149
+ "grad_norm": 3.38904070854187,
150
+ "learning_rate": 0.00016020000000000002,
151
+ "loss": 1.2959,
152
+ "step": 1000
153
+ },
154
+ {
155
+ "epoch": 0.3597122302158273,
156
+ "eval_loss": 1.2589664459228516,
157
+ "eval_runtime": 219.7485,
158
+ "eval_samples_per_second": 6.321,
159
+ "eval_steps_per_second": 0.792,
160
+ "step": 1000
161
+ },
162
+ {
163
+ "epoch": 0.39568345323741005,
164
+ "grad_norm": 4.801813125610352,
165
+ "learning_rate": 0.0001562,
166
+ "loss": 1.3535,
167
+ "step": 1100
168
+ },
169
+ {
170
+ "epoch": 0.39568345323741005,
171
+ "eval_loss": 1.27805757522583,
172
+ "eval_runtime": 219.8712,
173
+ "eval_samples_per_second": 6.317,
174
+ "eval_steps_per_second": 0.791,
175
+ "step": 1100
176
+ },
177
+ {
178
+ "epoch": 0.4316546762589928,
179
+ "grad_norm": 2.9837961196899414,
180
+ "learning_rate": 0.0001522,
181
+ "loss": 1.323,
182
+ "step": 1200
183
+ },
184
+ {
185
+ "epoch": 0.4316546762589928,
186
+ "eval_loss": 1.2651783227920532,
187
+ "eval_runtime": 216.3596,
188
+ "eval_samples_per_second": 6.42,
189
+ "eval_steps_per_second": 0.804,
190
+ "step": 1200
191
+ },
192
+ {
193
+ "epoch": 0.4676258992805755,
194
+ "grad_norm": 3.529353141784668,
195
+ "learning_rate": 0.0001482,
196
+ "loss": 1.1993,
197
+ "step": 1300
198
+ },
199
+ {
200
+ "epoch": 0.4676258992805755,
201
+ "eval_loss": 1.2643675804138184,
202
+ "eval_runtime": 216.7023,
203
+ "eval_samples_per_second": 6.41,
204
+ "eval_steps_per_second": 0.803,
205
+ "step": 1300
206
+ },
207
+ {
208
+ "epoch": 0.5035971223021583,
209
+ "grad_norm": 3.2244620323181152,
210
+ "learning_rate": 0.0001442,
211
+ "loss": 1.2759,
212
+ "step": 1400
213
+ },
214
+ {
215
+ "epoch": 0.5035971223021583,
216
+ "eval_loss": 1.2200113534927368,
217
+ "eval_runtime": 216.4189,
218
+ "eval_samples_per_second": 6.418,
219
+ "eval_steps_per_second": 0.804,
220
+ "step": 1400
221
+ },
222
+ {
223
+ "epoch": 0.539568345323741,
224
+ "grad_norm": 3.0878751277923584,
225
+ "learning_rate": 0.0001402,
226
+ "loss": 1.2437,
227
+ "step": 1500
228
+ },
229
+ {
230
+ "epoch": 0.539568345323741,
231
+ "eval_loss": 1.240950584411621,
232
+ "eval_runtime": 216.2682,
233
+ "eval_samples_per_second": 6.423,
234
+ "eval_steps_per_second": 0.805,
235
+ "step": 1500
236
+ },
237
+ {
238
+ "epoch": 0.5755395683453237,
239
+ "grad_norm": 5.510771751403809,
240
+ "learning_rate": 0.0001362,
241
+ "loss": 1.3627,
242
+ "step": 1600
243
+ },
244
+ {
245
+ "epoch": 0.5755395683453237,
246
+ "eval_loss": 1.2363018989562988,
247
+ "eval_runtime": 216.0492,
248
+ "eval_samples_per_second": 6.429,
249
+ "eval_steps_per_second": 0.805,
250
+ "step": 1600
251
+ },
252
+ {
253
+ "epoch": 0.6115107913669064,
254
+ "grad_norm": 2.9638707637786865,
255
+ "learning_rate": 0.00013220000000000001,
256
+ "loss": 1.2345,
257
+ "step": 1700
258
+ },
259
+ {
260
+ "epoch": 0.6115107913669064,
261
+ "eval_loss": 1.2406278848648071,
262
+ "eval_runtime": 217.09,
263
+ "eval_samples_per_second": 6.398,
264
+ "eval_steps_per_second": 0.802,
265
+ "step": 1700
266
+ },
267
+ {
268
+ "epoch": 0.6474820143884892,
269
+ "grad_norm": 4.32392692565918,
270
+ "learning_rate": 0.0001282,
271
+ "loss": 1.2049,
272
+ "step": 1800
273
+ },
274
+ {
275
+ "epoch": 0.6474820143884892,
276
+ "eval_loss": 1.2455447912216187,
277
+ "eval_runtime": 220.1078,
278
+ "eval_samples_per_second": 6.311,
279
+ "eval_steps_per_second": 0.791,
280
+ "step": 1800
281
+ },
282
+ {
283
+ "epoch": 0.6834532374100719,
284
+ "grad_norm": 1.932246208190918,
285
+ "learning_rate": 0.0001242,
286
+ "loss": 1.1696,
287
+ "step": 1900
288
+ },
289
+ {
290
+ "epoch": 0.6834532374100719,
291
+ "eval_loss": 1.1982994079589844,
292
+ "eval_runtime": 220.061,
293
+ "eval_samples_per_second": 6.312,
294
+ "eval_steps_per_second": 0.791,
295
+ "step": 1900
296
+ },
297
+ {
298
+ "epoch": 0.7194244604316546,
299
+ "grad_norm": 4.7478437423706055,
300
+ "learning_rate": 0.00012020000000000001,
301
+ "loss": 1.1938,
302
+ "step": 2000
303
+ },
304
+ {
305
+ "epoch": 0.7194244604316546,
306
+ "eval_loss": 1.1961568593978882,
307
+ "eval_runtime": 216.2948,
308
+ "eval_samples_per_second": 6.422,
309
+ "eval_steps_per_second": 0.804,
310
+ "step": 2000
311
+ },
312
+ {
313
+ "epoch": 0.7553956834532374,
314
+ "grad_norm": 2.9437406063079834,
315
+ "learning_rate": 0.00011619999999999999,
316
+ "loss": 1.2067,
317
+ "step": 2100
318
+ },
319
+ {
320
+ "epoch": 0.7553956834532374,
321
+ "eval_loss": 1.2068990468978882,
322
+ "eval_runtime": 216.4166,
323
+ "eval_samples_per_second": 6.418,
324
+ "eval_steps_per_second": 0.804,
325
+ "step": 2100
326
+ },
327
+ {
328
+ "epoch": 0.7913669064748201,
329
+ "grad_norm": 5.719799995422363,
330
+ "learning_rate": 0.00011220000000000002,
331
+ "loss": 1.2072,
332
+ "step": 2200
333
+ },
334
+ {
335
+ "epoch": 0.7913669064748201,
336
+ "eval_loss": 1.1652947664260864,
337
+ "eval_runtime": 216.0488,
338
+ "eval_samples_per_second": 6.429,
339
+ "eval_steps_per_second": 0.805,
340
+ "step": 2200
341
+ },
342
+ {
343
+ "epoch": 0.8273381294964028,
344
+ "grad_norm": 4.13755464553833,
345
+ "learning_rate": 0.00010820000000000001,
346
+ "loss": 1.1811,
347
+ "step": 2300
348
+ },
349
+ {
350
+ "epoch": 0.8273381294964028,
351
+ "eval_loss": 1.1560161113739014,
352
+ "eval_runtime": 216.2429,
353
+ "eval_samples_per_second": 6.423,
354
+ "eval_steps_per_second": 0.805,
355
+ "step": 2300
356
+ },
357
+ {
358
+ "epoch": 0.8633093525179856,
359
+ "grad_norm": 4.176021575927734,
360
+ "learning_rate": 0.00010420000000000001,
361
+ "loss": 1.1771,
362
+ "step": 2400
363
+ },
364
+ {
365
+ "epoch": 0.8633093525179856,
366
+ "eval_loss": 1.1574132442474365,
367
+ "eval_runtime": 216.2238,
368
+ "eval_samples_per_second": 6.424,
369
+ "eval_steps_per_second": 0.805,
370
+ "step": 2400
371
+ },
372
+ {
373
+ "epoch": 0.8992805755395683,
374
+ "grad_norm": 3.724977970123291,
375
+ "learning_rate": 0.00010024,
376
+ "loss": 1.2159,
377
+ "step": 2500
378
+ },
379
+ {
380
+ "epoch": 0.8992805755395683,
381
+ "eval_loss": 1.1301612854003906,
382
+ "eval_runtime": 219.0812,
383
+ "eval_samples_per_second": 6.34,
384
+ "eval_steps_per_second": 0.794,
385
+ "step": 2500
386
+ },
387
+ {
388
+ "epoch": 0.935251798561151,
389
+ "grad_norm": 4.331525802612305,
390
+ "learning_rate": 9.624000000000001e-05,
391
+ "loss": 1.2255,
392
+ "step": 2600
393
+ },
394
+ {
395
+ "epoch": 0.935251798561151,
396
+ "eval_loss": 1.1275829076766968,
397
+ "eval_runtime": 220.2427,
398
+ "eval_samples_per_second": 6.307,
399
+ "eval_steps_per_second": 0.79,
400
+ "step": 2600
401
+ },
402
+ {
403
+ "epoch": 0.9712230215827338,
404
+ "grad_norm": 4.840449810028076,
405
+ "learning_rate": 9.224e-05,
406
+ "loss": 1.1595,
407
+ "step": 2700
408
+ },
409
+ {
410
+ "epoch": 0.9712230215827338,
411
+ "eval_loss": 1.1190778017044067,
412
+ "eval_runtime": 217.1114,
413
+ "eval_samples_per_second": 6.398,
414
+ "eval_steps_per_second": 0.801,
415
+ "step": 2700
416
+ },
417
+ {
418
+ "epoch": 1.0071942446043165,
419
+ "grad_norm": 2.545038938522339,
420
+ "learning_rate": 8.824e-05,
421
+ "loss": 1.0609,
422
+ "step": 2800
423
+ },
424
+ {
425
+ "epoch": 1.0071942446043165,
426
+ "eval_loss": 1.1439604759216309,
427
+ "eval_runtime": 216.3202,
428
+ "eval_samples_per_second": 6.421,
429
+ "eval_steps_per_second": 0.804,
430
+ "step": 2800
431
+ },
432
+ {
433
+ "epoch": 1.0431654676258992,
434
+ "grad_norm": 4.535717964172363,
435
+ "learning_rate": 8.424e-05,
436
+ "loss": 0.8581,
437
+ "step": 2900
438
+ },
439
+ {
440
+ "epoch": 1.0431654676258992,
441
+ "eval_loss": 1.1216832399368286,
442
+ "eval_runtime": 216.3244,
443
+ "eval_samples_per_second": 6.421,
444
+ "eval_steps_per_second": 0.804,
445
+ "step": 2900
446
+ },
447
+ {
448
+ "epoch": 1.079136690647482,
449
+ "grad_norm": 3.345541000366211,
450
+ "learning_rate": 8.024e-05,
451
+ "loss": 0.7543,
452
+ "step": 3000
453
+ },
454
+ {
455
+ "epoch": 1.079136690647482,
456
+ "eval_loss": 1.1441179513931274,
457
+ "eval_runtime": 216.8992,
458
+ "eval_samples_per_second": 6.404,
459
+ "eval_steps_per_second": 0.802,
460
+ "step": 3000
461
+ },
462
+ {
463
+ "epoch": 1.1151079136690647,
464
+ "grad_norm": 4.593157768249512,
465
+ "learning_rate": 7.624e-05,
466
+ "loss": 0.722,
467
+ "step": 3100
468
+ },
469
+ {
470
+ "epoch": 1.1151079136690647,
471
+ "eval_loss": 1.2050632238388062,
472
+ "eval_runtime": 216.9928,
473
+ "eval_samples_per_second": 6.401,
474
+ "eval_steps_per_second": 0.802,
475
+ "step": 3100
476
+ },
477
+ {
478
+ "epoch": 1.1510791366906474,
479
+ "grad_norm": 6.413944244384766,
480
+ "learning_rate": 7.224000000000001e-05,
481
+ "loss": 0.8001,
482
+ "step": 3200
483
+ },
484
+ {
485
+ "epoch": 1.1510791366906474,
486
+ "eval_loss": 1.1092898845672607,
487
+ "eval_runtime": 216.7661,
488
+ "eval_samples_per_second": 6.408,
489
+ "eval_steps_per_second": 0.803,
490
+ "step": 3200
491
+ },
492
+ {
493
+ "epoch": 1.1870503597122302,
494
+ "grad_norm": 4.497458457946777,
495
+ "learning_rate": 6.824e-05,
496
+ "loss": 0.781,
497
+ "step": 3300
498
+ },
499
+ {
500
+ "epoch": 1.1870503597122302,
501
+ "eval_loss": 1.1409687995910645,
502
+ "eval_runtime": 220.367,
503
+ "eval_samples_per_second": 6.303,
504
+ "eval_steps_per_second": 0.79,
505
+ "step": 3300
506
+ },
507
+ {
508
+ "epoch": 1.223021582733813,
509
+ "grad_norm": 3.1842594146728516,
510
+ "learning_rate": 6.424e-05,
511
+ "loss": 0.7732,
512
+ "step": 3400
513
+ },
514
+ {
515
+ "epoch": 1.223021582733813,
516
+ "eval_loss": 1.128267526626587,
517
+ "eval_runtime": 220.6857,
518
+ "eval_samples_per_second": 6.294,
519
+ "eval_steps_per_second": 0.788,
520
+ "step": 3400
521
+ },
522
+ {
523
+ "epoch": 1.2589928057553956,
524
+ "grad_norm": 4.475135803222656,
525
+ "learning_rate": 6.0240000000000006e-05,
526
+ "loss": 0.7355,
527
+ "step": 3500
528
+ },
529
+ {
530
+ "epoch": 1.2589928057553956,
531
+ "eval_loss": 1.1131974458694458,
532
+ "eval_runtime": 216.6414,
533
+ "eval_samples_per_second": 6.412,
534
+ "eval_steps_per_second": 0.803,
535
+ "step": 3500
536
+ },
537
+ {
538
+ "epoch": 1.2949640287769784,
539
+ "grad_norm": 3.1941635608673096,
540
+ "learning_rate": 5.6240000000000004e-05,
541
+ "loss": 0.7593,
542
+ "step": 3600
543
+ },
544
+ {
545
+ "epoch": 1.2949640287769784,
546
+ "eval_loss": 1.1036189794540405,
547
+ "eval_runtime": 216.9893,
548
+ "eval_samples_per_second": 6.401,
549
+ "eval_steps_per_second": 0.802,
550
+ "step": 3600
551
+ },
552
+ {
553
+ "epoch": 1.330935251798561,
554
+ "grad_norm": 4.099954128265381,
555
+ "learning_rate": 5.224e-05,
556
+ "loss": 0.7558,
557
+ "step": 3700
558
+ },
559
+ {
560
+ "epoch": 1.330935251798561,
561
+ "eval_loss": 1.1037858724594116,
562
+ "eval_runtime": 216.7559,
563
+ "eval_samples_per_second": 6.408,
564
+ "eval_steps_per_second": 0.803,
565
+ "step": 3700
566
+ },
567
+ {
568
+ "epoch": 1.3669064748201438,
569
+ "grad_norm": 5.274450778961182,
570
+ "learning_rate": 4.824e-05,
571
+ "loss": 0.7428,
572
+ "step": 3800
573
+ },
574
+ {
575
+ "epoch": 1.3669064748201438,
576
+ "eval_loss": 1.1093668937683105,
577
+ "eval_runtime": 216.6459,
578
+ "eval_samples_per_second": 6.411,
579
+ "eval_steps_per_second": 0.803,
580
+ "step": 3800
581
+ },
582
+ {
583
+ "epoch": 1.4028776978417266,
584
+ "grad_norm": 5.278382301330566,
585
+ "learning_rate": 4.424e-05,
586
+ "loss": 0.7329,
587
+ "step": 3900
588
+ },
589
+ {
590
+ "epoch": 1.4028776978417266,
591
+ "eval_loss": 1.0927892923355103,
592
+ "eval_runtime": 216.7414,
593
+ "eval_samples_per_second": 6.409,
594
+ "eval_steps_per_second": 0.803,
595
+ "step": 3900
596
+ },
597
+ {
598
+ "epoch": 1.4388489208633093,
599
+ "grad_norm": 5.485278606414795,
600
+ "learning_rate": 4.024e-05,
601
+ "loss": 0.703,
602
+ "step": 4000
603
+ },
604
+ {
605
+ "epoch": 1.4388489208633093,
606
+ "eval_loss": 1.093366026878357,
607
+ "eval_runtime": 218.3096,
608
+ "eval_samples_per_second": 6.363,
609
+ "eval_steps_per_second": 0.797,
610
+ "step": 4000
611
+ },
612
+ {
613
+ "epoch": 1.474820143884892,
614
+ "grad_norm": 4.6593241691589355,
615
+ "learning_rate": 3.624e-05,
616
+ "loss": 0.7529,
617
+ "step": 4100
618
+ },
619
+ {
620
+ "epoch": 1.474820143884892,
621
+ "eval_loss": 1.0526800155639648,
622
+ "eval_runtime": 221.2373,
623
+ "eval_samples_per_second": 6.278,
624
+ "eval_steps_per_second": 0.786,
625
+ "step": 4100
626
+ },
627
+ {
628
+ "epoch": 1.5107913669064748,
629
+ "grad_norm": 4.241304397583008,
630
+ "learning_rate": 3.224e-05,
631
+ "loss": 0.7509,
632
+ "step": 4200
633
+ },
634
+ {
635
+ "epoch": 1.5107913669064748,
636
+ "eval_loss": 1.0518856048583984,
637
+ "eval_runtime": 218.2567,
638
+ "eval_samples_per_second": 6.364,
639
+ "eval_steps_per_second": 0.797,
640
+ "step": 4200
641
+ },
642
+ {
643
+ "epoch": 1.5467625899280577,
644
+ "grad_norm": 3.498211622238159,
645
+ "learning_rate": 2.824e-05,
646
+ "loss": 0.7043,
647
+ "step": 4300
648
+ },
649
+ {
650
+ "epoch": 1.5467625899280577,
651
+ "eval_loss": 1.0490930080413818,
652
+ "eval_runtime": 216.8759,
653
+ "eval_samples_per_second": 6.405,
654
+ "eval_steps_per_second": 0.802,
655
+ "step": 4300
656
+ },
657
+ {
658
+ "epoch": 1.5827338129496402,
659
+ "grad_norm": 5.114346504211426,
660
+ "learning_rate": 2.4240000000000002e-05,
661
+ "loss": 0.741,
662
+ "step": 4400
663
+ },
664
+ {
665
+ "epoch": 1.5827338129496402,
666
+ "eval_loss": 1.0419996976852417,
667
+ "eval_runtime": 217.6752,
668
+ "eval_samples_per_second": 6.381,
669
+ "eval_steps_per_second": 0.799,
670
+ "step": 4400
671
+ },
672
+ {
673
+ "epoch": 1.6187050359712232,
674
+ "grad_norm": 6.213000297546387,
675
+ "learning_rate": 2.024e-05,
676
+ "loss": 0.6748,
677
+ "step": 4500
678
+ },
679
+ {
680
+ "epoch": 1.6187050359712232,
681
+ "eval_loss": 1.054345726966858,
682
+ "eval_runtime": 217.4038,
683
+ "eval_samples_per_second": 6.389,
684
+ "eval_steps_per_second": 0.8,
685
+ "step": 4500
686
+ },
687
+ {
688
+ "epoch": 1.6546762589928057,
689
+ "grad_norm": 4.790684700012207,
690
+ "learning_rate": 1.624e-05,
691
+ "loss": 0.6161,
692
+ "step": 4600
693
+ },
694
+ {
695
+ "epoch": 1.6546762589928057,
696
+ "eval_loss": 1.050432562828064,
697
+ "eval_runtime": 217.7263,
698
+ "eval_samples_per_second": 6.38,
699
+ "eval_steps_per_second": 0.799,
700
+ "step": 4600
701
+ },
702
+ {
703
+ "epoch": 1.6906474820143886,
704
+ "grad_norm": 3.735363483428955,
705
+ "learning_rate": 1.224e-05,
706
+ "loss": 0.6545,
707
+ "step": 4700
708
+ },
709
+ {
710
+ "epoch": 1.6906474820143886,
711
+ "eval_loss": 1.0342308282852173,
712
+ "eval_runtime": 218.4846,
713
+ "eval_samples_per_second": 6.357,
714
+ "eval_steps_per_second": 0.796,
715
+ "step": 4700
716
+ },
717
+ {
718
+ "epoch": 1.7266187050359711,
719
+ "grad_norm": 7.324685573577881,
720
+ "learning_rate": 8.24e-06,
721
+ "loss": 0.6811,
722
+ "step": 4800
723
+ },
724
+ {
725
+ "epoch": 1.7266187050359711,
726
+ "eval_loss": 1.0260616540908813,
727
+ "eval_runtime": 220.9578,
728
+ "eval_samples_per_second": 6.286,
729
+ "eval_steps_per_second": 0.787,
730
+ "step": 4800
731
+ },
732
+ {
733
+ "epoch": 1.762589928057554,
734
+ "grad_norm": 8.569375038146973,
735
+ "learning_rate": 4.24e-06,
736
+ "loss": 0.6596,
737
+ "step": 4900
738
+ },
739
+ {
740
+ "epoch": 1.762589928057554,
741
+ "eval_loss": 1.0225062370300293,
742
+ "eval_runtime": 221.0738,
743
+ "eval_samples_per_second": 6.283,
744
+ "eval_steps_per_second": 0.787,
745
+ "step": 4900
746
+ },
747
+ {
748
+ "epoch": 1.7985611510791366,
749
+ "grad_norm": 5.594555377960205,
750
+ "learning_rate": 2.4e-07,
751
+ "loss": 0.6875,
752
+ "step": 5000
753
+ },
754
+ {
755
+ "epoch": 1.7985611510791366,
756
+ "eval_loss": 1.017230749130249,
757
+ "eval_runtime": 217.5896,
758
+ "eval_samples_per_second": 6.384,
759
+ "eval_steps_per_second": 0.8,
760
+ "step": 5000
761
+ }
762
+ ],
763
+ "logging_steps": 100,
764
+ "max_steps": 5000,
765
+ "num_input_tokens_seen": 0,
766
+ "num_train_epochs": 2,
767
+ "save_steps": 100,
768
+ "stateful_callbacks": {
769
+ "TrainerControl": {
770
+ "args": {
771
+ "should_epoch_stop": false,
772
+ "should_evaluate": false,
773
+ "should_log": false,
774
+ "should_save": true,
775
+ "should_training_stop": true
776
+ },
777
+ "attributes": {}
778
+ }
779
+ },
780
+ "total_flos": 9.304695050327654e+16,
781
+ "train_batch_size": 8,
782
+ "trial_name": null,
783
+ "trial_params": null
784
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6ea103261f2a293397d9d36376081c32b39e3756161fc4a4ec9d95f0984df88
3
+ size 5368