software-vagabond commited on
Commit
2fad024
·
1 Parent(s): cfd2845

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.67 +/- 1.08
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47b0e7d56da2f24289b62b08ece32027246d08058ec14331a62b7aea3d302e8e
3
+ size 108153
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f80c4e0dc10>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f80c4e0ccc0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1685701611512160400,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL3VzZXIvLnZpcnR1YWxlbnZzL2RhdGFzY2llbmNlL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS91c2VyLy52aXJ0dWFsZW52cy9kYXRhc2NpZW5jZS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAiljVPrNpAD06TxQ/iljVPrNpAD06TxQ/iljVPrNpAD06TxQ/iljVPrNpAD06TxQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtnydv/h38T6uxhu/bAP/PgK0fL9SDYI/goOOv26s3T9RAIE/sck+v/893L/v3ds+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACKWNU+s2kAPTpPFD+cvy08iL0OucnFOTuKWNU+s2kAPTpPFD+cvy08iL0OucnFOTuKWNU+s2kAPTpPFD+cvy08iL0OucnFOTuKWNU+s2kAPTpPFD+cvy08iL0OucnFOTuUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[0.41669112 0.0313508 0.5793339 ]\n [0.41669112 0.0313508 0.5793339 ]\n [0.41669112 0.0313508 0.5793339 ]\n [0.41669112 0.0313508 0.5793339 ]]",
38
+ "desired_goal": "[[-1.2303684 0.4716184 -0.60850036]\n [ 0.49807298 -0.9871217 1.0160315 ]\n [-1.1133883 1.7318246 1.0078222 ]\n [-0.74526507 -1.720642 0.4294276 ]]",
39
+ "observation": "[[ 4.1669112e-01 3.1350803e-02 5.7933390e-01 1.0604765e-02\n -1.3612781e-04 2.8346649e-03]\n [ 4.1669112e-01 3.1350803e-02 5.7933390e-01 1.0604765e-02\n -1.3612781e-04 2.8346649e-03]\n [ 4.1669112e-01 3.1350803e-02 5.7933390e-01 1.0604765e-02\n -1.3612781e-04 2.8346649e-03]\n [ 4.1669112e-01 3.1350803e-02 5.7933390e-01 1.0604765e-02\n -1.3612781e-04 2.8346649e-03]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUeHkPD1lr70+634+az9IPQVQCj6B0zA+6gAVvhseQr2BlYk9JJoKPu3GFj2fC7Y9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.02793947 -0.08564232 0.24894425]\n [ 0.04888861 0.13507088 0.17268182]\n [-0.1455113 -0.04739199 0.06717969]\n [ 0.13535362 0.0368108 0.08888935]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEK0VbY7zDcCUhpRSlIwBbJRLMowBdJRHQKdOqbsniNt1fZQoaAZoCWgPQwisHcU56ggCwJSGlFKUaBVLMmgWR0CnTXNdiUgTdX2UKGgGaAloD0MIoGtfQC98FMCUhpRSlGgVSzJoFkdAp0wIv114gXV9lChoBmgJaA9DCGqEfqZetwDAlIaUUpRoFUsyaBZHQKdKcDU3GXJ1fZQoaAZoCWgPQwhAic+dYJ8BwJSGlFKUaBVLMmgWR0CnT7o68xsVdX2UKGgGaAloD0MIJbGk3H0uAcCUhpRSlGgVSzJoFkdAp06D4k/r0XV9lChoBmgJaA9DCB1znrEvOQfAlIaUUpRoFUsyaBZHQKdNGVGCqZN1fZQoaAZoCWgPQwhDyHn/H0cMwJSGlFKUaBVLMmgWR0CnS4DZ13dLdX2UKGgGaAloD0MIWYgOgSNBBsCUhpRSlGgVSzJoFkdAp1DYt4A0bnV9lChoBmgJaA9DCOZbH9YbNQPAlIaUUpRoFUsyaBZHQKdPomNzbN91fZQoaAZoCWgPQwgXY2Adxy8UwJSGlFKUaBVLMmgWR0CnTjgBtDUmdX2UKGgGaAloD0MInZyhuOMNAsCUhpRSlGgVSzJoFkdAp0yff4yoGnV9lChoBmgJaA9DCLhAguLH2P6/lIaUUpRoFUsyaBZHQKdR7x2jfvZ1fZQoaAZoCWgPQwiX5esy/GcFwJSGlFKUaBVLMmgWR0CnULjR2KVIdX2UKGgGaAloD0MIqvBneLOmA8CUhpRSlGgVSzJoFkdAp09OPDHfdnV9lChoBmgJaA9DCMoZijvexAzAlIaUUpRoFUsyaBZHQKdNtb9qDbt1fZQoaAZoCWgPQwj/JalMMacBwJSGlFKUaBVLMmgWR0CnUv6HKwIMdX2UKGgGaAloD0MIcjEG1nF8AMCUhpRSlGgVSzJoFkdAp1HIOJ+DvnV9lChoBmgJaA9DCAVSYtf21grAlIaUUpRoFUsyaBZHQKdQXaKUFB91fZQoaAZoCWgPQwjs3R/vVesEwJSGlFKUaBVLMmgWR0CnTsUg0TDgdX2UKGgGaAloD0MIfhtivOa1AsCUhpRSlGgVSzJoFkdAp1QL+JgssnV9lChoBmgJaA9DCJ0tILQeHgfAlIaUUpRoFUsyaBZHQKdS1aGHpKV1fZQoaAZoCWgPQwh/+PnvwYsOwJSGlFKUaBVLMmgWR0CnUWsMI/qxdX2UKGgGaAloD0MI6zU9KChFCsCUhpRSlGgVSzJoFkdAp0/Sujh1knV9lChoBmgJaA9DCF/Tg4JSdAzAlIaUUpRoFUsyaBZHQKdVHZtelbh1fZQoaAZoCWgPQwiNz2T/PO0AwJSGlFKUaBVLMmgWR0CnU+c7ZFoddX2UKGgGaAloD0MIvjJv1XXoA8CUhpRSlGgVSzJoFkdAp1J8wWWQfnV9lChoBmgJaA9DCGk2j8NgDhDAlIaUUpRoFUsyaBZHQKdQ5Dn/1g91fZQoaAZoCWgPQwgTZtr+lfUBwJSGlFKUaBVLMmgWR0CnViuhCdBjdX2UKGgGaAloD0MI28AdqFMeBsCUhpRSlGgVSzJoFkdAp1T1P+GXX3V9lChoBmgJaA9DCPaX3ZOHhfq/lIaUUpRoFUsyaBZHQKdTiqEvkBF1fZQoaAZoCWgPQwjeHoSAfCkDwJSGlFKUaBVLMmgWR0CnUfIUSIxhdX2UKGgGaAloD0MITpmbb0T3BsCUhpRSlGgVSzJoFkdAp1c6tNi6QXV9lChoBmgJaA9DCPllMEYkqgPAlIaUUpRoFUsyaBZHQKdWBE9dNWV1fZQoaAZoCWgPQwh6AIv8+oEHwJSGlFKUaBVLMmgWR0CnVJm2sq8UdX2UKGgGaAloD0MIaW/whcm0AcCUhpRSlGgVSzJoFkdAp1MBKpT/AHV9lChoBmgJaA9DCIVBmUaTCwbAlIaUUpRoFUsyaBZHQKdYRzCDVYp1fZQoaAZoCWgPQwjWWMLaGDsFwJSGlFKUaBVLMmgWR0CnVxDcuanadX2UKGgGaAloD0MIlZuopbl1BsCUhpRSlGgVSzJoFkdAp1WmPHT7VXV9lChoBmgJaA9DCIB/SpUo+wbAlIaUUpRoFUsyaBZHQKdUDbxmTTx1fZQoaAZoCWgPQwgQJO8cynAKwJSGlFKUaBVLMmgWR0CnWVsOwxFidX2UKGgGaAloD0MI5Q6byMxFDsCUhpRSlGgVSzJoFkdAp1gkqUeMh3V9lChoBmgJaA9DCC4bnfNTTBHAlIaUUpRoFUsyaBZHQKdWug/Tspp1fZQoaAZoCWgPQwh5zas6q8ULwJSGlFKUaBVLMmgWR0CnVSGHP/rCdX2UKGgGaAloD0MII0xRLo0fDcCUhpRSlGgVSzJoFkdAp1p+U4aP0nV9lChoBmgJaA9DCKkz95DwfQPAlIaUUpRoFUsyaBZHQKdZR+5vtMR1fZQoaAZoCWgPQwjX3NH/cg0OwJSGlFKUaBVLMmgWR0CnV91e0G/vdX2UKGgGaAloD0MIv2INF7nnD8CUhpRSlGgVSzJoFkdAp1ZFQEZBLXV9lChoBmgJaA9DCLk5lQwAFQfAlIaUUpRoFUsyaBZHQKdbhV+Zw4t1fZQoaAZoCWgPQwg9ZTVdTxQPwJSGlFKUaBVLMmgWR0CnWk7+tKZldX2UKGgGaAloD0MIEvsEUIzMDsCUhpRSlGgVSzJoFkdAp1jkp3HJcXV9lChoBmgJaA9DCP5kjA+zNxHAlIaUUpRoFUsyaBZHQKdXTH3Dej51fZQoaAZoCWgPQwhYGvhRDVsPwJSGlFKUaBVLMmgWR0CnXI9Vea8ZdX2UKGgGaAloD0MIA0TBjClYEMCUhpRSlGgVSzJoFkdAp1tZLTQVsXV9lChoBmgJaA9DCD9uv3yychDAlIaUUpRoFUsyaBZHQKdZ7pX6qKh1fZQoaAZoCWgPQwiaXIyBdZwGwJSGlFKUaBVLMmgWR0CnWFYKIBRydX2UKGgGaAloD0MID0bsE0DRCsCUhpRSlGgVSzJoFkdAp12baqS5iHV9lChoBmgJaA9DCBfwMsNG2QTAlIaUUpRoFUsyaBZHQKdcZR4yGi51fZQoaAZoCWgPQwhsI57sZqYLwJSGlFKUaBVLMmgWR0CnWvqQaJhwdX2UKGgGaAloD0MIrg0V4/yNC8CUhpRSlGgVSzJoFkdAp1liD7Ikq3V9lChoBmgJaA9DCO/FF+3xggXAlIaUUpRoFUsyaBZHQKdepp5eJHl1fZQoaAZoCWgPQwgB323eOMkKwJSGlFKUaBVLMmgWR0CnXXBDG96DdX2UKGgGaAloD0MID9b/OcyXCsCUhpRSlGgVSzJoFkdAp1wF0YCQtHV9lChoBmgJaA9DCO60NSIYx/S/lIaUUpRoFUsyaBZHQKdabYYBNmF1fZQoaAZoCWgPQwhupddmY1USwJSGlFKUaBVLMmgWR0CnX6+6Zpi7dX2UKGgGaAloD0MIHLXC9L0mCsCUhpRSlGgVSzJoFkdAp155fYzzmXV9lChoBmgJaA9DCCAIkKFjBwTAlIaUUpRoFUsyaBZHQKddDumaYu11fZQoaAZoCWgPQwjjqrLvipARwJSGlFKUaBVLMmgWR0CnW3Zn+Q2ddX2UKGgGaAloD0MI/b5/8+KECsCUhpRSlGgVSzJoFkdAp2C5E6T4cnV9lChoBmgJaA9DCMsvgzEisRXAlIaUUpRoFUsyaBZHQKdfgrjo6jp1fZQoaAZoCWgPQwi/Y3jsZzH+v5SGlFKUaBVLMmgWR0CnXhghKUV0dX2UKGgGaAloD0MIoyO5/IeUBsCUhpRSlGgVSzJoFkdAp1x/lyR0VHV9lChoBmgJaA9DCM5wAz4/LA3AlIaUUpRoFUsyaBZHQKdhySpzcRF1fZQoaAZoCWgPQwiKj0/IztsEwJSGlFKUaBVLMmgWR0CnYJLI5o4/dX2UKGgGaAloD0MIrMQ8K2m1EcCUhpRSlGgVSzJoFkdAp18oeDFqBXV9lChoBmgJaA9DCMDOTZtx+hLAlIaUUpRoFUsyaBZHQKddj/nW8RN1fZQoaAZoCWgPQwgSSl8IOR8RwJSGlFKUaBVLMmgWR0CnYtyIgvDhdX2UKGgGaAloD0MI9FKxMa/jB8CUhpRSlGgVSzJoFkdAp2GmIfr8i3V9lChoBmgJaA9DCNnts8pMWRLAlIaUUpRoFUsyaBZHQKdgO4lQdjp1fZQoaAZoCWgPQwi5jQbwFggHwJSGlFKUaBVLMmgWR0CnXqMJQcghdX2UKGgGaAloD0MIJNOh0/OuBcCUhpRSlGgVSzJoFkdAp2Pundfsu3V9lChoBmgJaA9DCAcKvJNPrw3AlIaUUpRoFUsyaBZHQKdiuIUJv5x1fZQoaAZoCWgPQwhJ8lzfh6MCwJSGlFKUaBVLMmgWR0CnYU4iosI3dX2UKGgGaAloD0MI53EYzF/hD8CUhpRSlGgVSzJoFkdAp1+1uk1uSHV9lChoBmgJaA9DCPwBDwwg/A/AlIaUUpRoFUsyaBZHQKdlCJbdJrd1fZQoaAZoCWgPQwjncoOhDisRwJSGlFKUaBVLMmgWR0CnY9J0OmSAdX2UKGgGaAloD0MIqDXNO06xBMCUhpRSlGgVSzJoFkdAp2Jn1J17pnV9lChoBmgJaA9DCEevBigNVQDAlIaUUpRoFUsyaBZHQKdgz0lqrR11fZQoaAZoCWgPQwiTcYxkj/AJwJSGlFKUaBVLMmgWR0CnZhf9pAUtdX2UKGgGaAloD0MIRiV1ApoIBcCUhpRSlGgVSzJoFkdAp2ThosZpBXV9lChoBmgJaA9DCCZvgJnvAAvAlIaUUpRoFUsyaBZHQKdjdwLmZE51fZQoaAZoCWgPQwgIBDqTNpUJwJSGlFKUaBVLMmgWR0CnYd6A4GUwdX2UKGgGaAloD0MIpb+XwoOmAMCUhpRSlGgVSzJoFkdAp2cp7HAAQ3V9lChoBmgJaA9DCGUaTS7GUBDAlIaUUpRoFUsyaBZHQKdl85Xlr/N1fZQoaAZoCWgPQwgAxF29iowOwJSGlFKUaBVLMmgWR0CnZIj7ALy+dX2UKGgGaAloD0MIho2yfjNxD8CUhpRSlGgVSzJoFkdAp2Lwf6oES3V9lChoBmgJaA9DCNxI2SJp1wjAlIaUUpRoFUsyaBZHQKdoP71qWTp1fZQoaAZoCWgPQwgOhc/WwcH+v5SGlFKUaBVLMmgWR0CnZwlXRw6ydX2UKGgGaAloD0MIPIVcqWdBDMCUhpRSlGgVSzJoFkdAp2Wevt+kQHV9lChoBmgJaA9DCCz1LAjlHRjAlIaUUpRoFUsyaBZHQKdkBl5nlGR1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ccd4decc223c114e779c4dc9a39a62f5f9523fb608e1506e3b22cc6193e98ac
3
+ size 44670
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cba0cd885a7ac6049c7a8a68e942243893603da0e99a4ecc8327dce8137e0fca
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Fri Apr 2 22:23:49 UTC 2021
2
+ - Python: 3.9.5
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 1.11.0+cu102
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.2
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f80c4e0dc10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f80c4e0ccc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685701611512160400, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL3VzZXIvLnZpcnR1YWxlbnZzL2RhdGFzY2llbmNlL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS91c2VyLy52aXJ0dWFsZW52cy9kYXRhc2NpZW5jZS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAiljVPrNpAD06TxQ/iljVPrNpAD06TxQ/iljVPrNpAD06TxQ/iljVPrNpAD06TxQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtnydv/h38T6uxhu/bAP/PgK0fL9SDYI/goOOv26s3T9RAIE/sck+v/893L/v3ds+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACKWNU+s2kAPTpPFD+cvy08iL0OucnFOTuKWNU+s2kAPTpPFD+cvy08iL0OucnFOTuKWNU+s2kAPTpPFD+cvy08iL0OucnFOTuKWNU+s2kAPTpPFD+cvy08iL0OucnFOTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41669112 0.0313508 0.5793339 ]\n [0.41669112 0.0313508 0.5793339 ]\n [0.41669112 0.0313508 0.5793339 ]\n [0.41669112 0.0313508 0.5793339 ]]", "desired_goal": "[[-1.2303684 0.4716184 -0.60850036]\n [ 0.49807298 -0.9871217 1.0160315 ]\n [-1.1133883 1.7318246 1.0078222 ]\n [-0.74526507 -1.720642 0.4294276 ]]", "observation": "[[ 4.1669112e-01 3.1350803e-02 5.7933390e-01 1.0604765e-02\n -1.3612781e-04 2.8346649e-03]\n [ 4.1669112e-01 3.1350803e-02 5.7933390e-01 1.0604765e-02\n -1.3612781e-04 2.8346649e-03]\n [ 4.1669112e-01 3.1350803e-02 5.7933390e-01 1.0604765e-02\n -1.3612781e-04 2.8346649e-03]\n [ 4.1669112e-01 3.1350803e-02 5.7933390e-01 1.0604765e-02\n -1.3612781e-04 2.8346649e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUeHkPD1lr70+634+az9IPQVQCj6B0zA+6gAVvhseQr2BlYk9JJoKPu3GFj2fC7Y9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02793947 -0.08564232 0.24894425]\n [ 0.04888861 0.13507088 0.17268182]\n [-0.1455113 -0.04739199 0.06717969]\n [ 0.13535362 0.0368108 0.08888935]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEK0VbY7zDcCUhpRSlIwBbJRLMowBdJRHQKdOqbsniNt1fZQoaAZoCWgPQwisHcU56ggCwJSGlFKUaBVLMmgWR0CnTXNdiUgTdX2UKGgGaAloD0MIoGtfQC98FMCUhpRSlGgVSzJoFkdAp0wIv114gXV9lChoBmgJaA9DCGqEfqZetwDAlIaUUpRoFUsyaBZHQKdKcDU3GXJ1fZQoaAZoCWgPQwhAic+dYJ8BwJSGlFKUaBVLMmgWR0CnT7o68xsVdX2UKGgGaAloD0MIJbGk3H0uAcCUhpRSlGgVSzJoFkdAp06D4k/r0XV9lChoBmgJaA9DCB1znrEvOQfAlIaUUpRoFUsyaBZHQKdNGVGCqZN1fZQoaAZoCWgPQwhDyHn/H0cMwJSGlFKUaBVLMmgWR0CnS4DZ13dLdX2UKGgGaAloD0MIWYgOgSNBBsCUhpRSlGgVSzJoFkdAp1DYt4A0bnV9lChoBmgJaA9DCOZbH9YbNQPAlIaUUpRoFUsyaBZHQKdPomNzbN91fZQoaAZoCWgPQwgXY2Adxy8UwJSGlFKUaBVLMmgWR0CnTjgBtDUmdX2UKGgGaAloD0MInZyhuOMNAsCUhpRSlGgVSzJoFkdAp0yff4yoGnV9lChoBmgJaA9DCLhAguLH2P6/lIaUUpRoFUsyaBZHQKdR7x2jfvZ1fZQoaAZoCWgPQwiX5esy/GcFwJSGlFKUaBVLMmgWR0CnULjR2KVIdX2UKGgGaAloD0MIqvBneLOmA8CUhpRSlGgVSzJoFkdAp09OPDHfdnV9lChoBmgJaA9DCMoZijvexAzAlIaUUpRoFUsyaBZHQKdNtb9qDbt1fZQoaAZoCWgPQwj/JalMMacBwJSGlFKUaBVLMmgWR0CnUv6HKwIMdX2UKGgGaAloD0MIcjEG1nF8AMCUhpRSlGgVSzJoFkdAp1HIOJ+DvnV9lChoBmgJaA9DCAVSYtf21grAlIaUUpRoFUsyaBZHQKdQXaKUFB91fZQoaAZoCWgPQwjs3R/vVesEwJSGlFKUaBVLMmgWR0CnTsUg0TDgdX2UKGgGaAloD0MIfhtivOa1AsCUhpRSlGgVSzJoFkdAp1QL+JgssnV9lChoBmgJaA9DCJ0tILQeHgfAlIaUUpRoFUsyaBZHQKdS1aGHpKV1fZQoaAZoCWgPQwh/+PnvwYsOwJSGlFKUaBVLMmgWR0CnUWsMI/qxdX2UKGgGaAloD0MI6zU9KChFCsCUhpRSlGgVSzJoFkdAp0/Sujh1knV9lChoBmgJaA9DCF/Tg4JSdAzAlIaUUpRoFUsyaBZHQKdVHZtelbh1fZQoaAZoCWgPQwiNz2T/PO0AwJSGlFKUaBVLMmgWR0CnU+c7ZFoddX2UKGgGaAloD0MIvjJv1XXoA8CUhpRSlGgVSzJoFkdAp1J8wWWQfnV9lChoBmgJaA9DCGk2j8NgDhDAlIaUUpRoFUsyaBZHQKdQ5Dn/1g91fZQoaAZoCWgPQwgTZtr+lfUBwJSGlFKUaBVLMmgWR0CnViuhCdBjdX2UKGgGaAloD0MI28AdqFMeBsCUhpRSlGgVSzJoFkdAp1T1P+GXX3V9lChoBmgJaA9DCPaX3ZOHhfq/lIaUUpRoFUsyaBZHQKdTiqEvkBF1fZQoaAZoCWgPQwjeHoSAfCkDwJSGlFKUaBVLMmgWR0CnUfIUSIxhdX2UKGgGaAloD0MITpmbb0T3BsCUhpRSlGgVSzJoFkdAp1c6tNi6QXV9lChoBmgJaA9DCPllMEYkqgPAlIaUUpRoFUsyaBZHQKdWBE9dNWV1fZQoaAZoCWgPQwh6AIv8+oEHwJSGlFKUaBVLMmgWR0CnVJm2sq8UdX2UKGgGaAloD0MIaW/whcm0AcCUhpRSlGgVSzJoFkdAp1MBKpT/AHV9lChoBmgJaA9DCIVBmUaTCwbAlIaUUpRoFUsyaBZHQKdYRzCDVYp1fZQoaAZoCWgPQwjWWMLaGDsFwJSGlFKUaBVLMmgWR0CnVxDcuanadX2UKGgGaAloD0MIlZuopbl1BsCUhpRSlGgVSzJoFkdAp1WmPHT7VXV9lChoBmgJaA9DCIB/SpUo+wbAlIaUUpRoFUsyaBZHQKdUDbxmTTx1fZQoaAZoCWgPQwgQJO8cynAKwJSGlFKUaBVLMmgWR0CnWVsOwxFidX2UKGgGaAloD0MI5Q6byMxFDsCUhpRSlGgVSzJoFkdAp1gkqUeMh3V9lChoBmgJaA9DCC4bnfNTTBHAlIaUUpRoFUsyaBZHQKdWug/Tspp1fZQoaAZoCWgPQwh5zas6q8ULwJSGlFKUaBVLMmgWR0CnVSGHP/rCdX2UKGgGaAloD0MII0xRLo0fDcCUhpRSlGgVSzJoFkdAp1p+U4aP0nV9lChoBmgJaA9DCKkz95DwfQPAlIaUUpRoFUsyaBZHQKdZR+5vtMR1fZQoaAZoCWgPQwjX3NH/cg0OwJSGlFKUaBVLMmgWR0CnV91e0G/vdX2UKGgGaAloD0MIv2INF7nnD8CUhpRSlGgVSzJoFkdAp1ZFQEZBLXV9lChoBmgJaA9DCLk5lQwAFQfAlIaUUpRoFUsyaBZHQKdbhV+Zw4t1fZQoaAZoCWgPQwg9ZTVdTxQPwJSGlFKUaBVLMmgWR0CnWk7+tKZldX2UKGgGaAloD0MIEvsEUIzMDsCUhpRSlGgVSzJoFkdAp1jkp3HJcXV9lChoBmgJaA9DCP5kjA+zNxHAlIaUUpRoFUsyaBZHQKdXTH3Dej51fZQoaAZoCWgPQwhYGvhRDVsPwJSGlFKUaBVLMmgWR0CnXI9Vea8ZdX2UKGgGaAloD0MIA0TBjClYEMCUhpRSlGgVSzJoFkdAp1tZLTQVsXV9lChoBmgJaA9DCD9uv3yychDAlIaUUpRoFUsyaBZHQKdZ7pX6qKh1fZQoaAZoCWgPQwiaXIyBdZwGwJSGlFKUaBVLMmgWR0CnWFYKIBRydX2UKGgGaAloD0MID0bsE0DRCsCUhpRSlGgVSzJoFkdAp12baqS5iHV9lChoBmgJaA9DCBfwMsNG2QTAlIaUUpRoFUsyaBZHQKdcZR4yGi51fZQoaAZoCWgPQwhsI57sZqYLwJSGlFKUaBVLMmgWR0CnWvqQaJhwdX2UKGgGaAloD0MIrg0V4/yNC8CUhpRSlGgVSzJoFkdAp1liD7Ikq3V9lChoBmgJaA9DCO/FF+3xggXAlIaUUpRoFUsyaBZHQKdepp5eJHl1fZQoaAZoCWgPQwgB323eOMkKwJSGlFKUaBVLMmgWR0CnXXBDG96DdX2UKGgGaAloD0MID9b/OcyXCsCUhpRSlGgVSzJoFkdAp1wF0YCQtHV9lChoBmgJaA9DCO60NSIYx/S/lIaUUpRoFUsyaBZHQKdabYYBNmF1fZQoaAZoCWgPQwhupddmY1USwJSGlFKUaBVLMmgWR0CnX6+6Zpi7dX2UKGgGaAloD0MIHLXC9L0mCsCUhpRSlGgVSzJoFkdAp155fYzzmXV9lChoBmgJaA9DCCAIkKFjBwTAlIaUUpRoFUsyaBZHQKddDumaYu11fZQoaAZoCWgPQwjjqrLvipARwJSGlFKUaBVLMmgWR0CnW3Zn+Q2ddX2UKGgGaAloD0MI/b5/8+KECsCUhpRSlGgVSzJoFkdAp2C5E6T4cnV9lChoBmgJaA9DCMsvgzEisRXAlIaUUpRoFUsyaBZHQKdfgrjo6jp1fZQoaAZoCWgPQwi/Y3jsZzH+v5SGlFKUaBVLMmgWR0CnXhghKUV0dX2UKGgGaAloD0MIoyO5/IeUBsCUhpRSlGgVSzJoFkdAp1x/lyR0VHV9lChoBmgJaA9DCM5wAz4/LA3AlIaUUpRoFUsyaBZHQKdhySpzcRF1fZQoaAZoCWgPQwiKj0/IztsEwJSGlFKUaBVLMmgWR0CnYJLI5o4/dX2UKGgGaAloD0MIrMQ8K2m1EcCUhpRSlGgVSzJoFkdAp18oeDFqBXV9lChoBmgJaA9DCMDOTZtx+hLAlIaUUpRoFUsyaBZHQKddj/nW8RN1fZQoaAZoCWgPQwgSSl8IOR8RwJSGlFKUaBVLMmgWR0CnYtyIgvDhdX2UKGgGaAloD0MI9FKxMa/jB8CUhpRSlGgVSzJoFkdAp2GmIfr8i3V9lChoBmgJaA9DCNnts8pMWRLAlIaUUpRoFUsyaBZHQKdgO4lQdjp1fZQoaAZoCWgPQwi5jQbwFggHwJSGlFKUaBVLMmgWR0CnXqMJQcghdX2UKGgGaAloD0MIJNOh0/OuBcCUhpRSlGgVSzJoFkdAp2Pundfsu3V9lChoBmgJaA9DCAcKvJNPrw3AlIaUUpRoFUsyaBZHQKdiuIUJv5x1fZQoaAZoCWgPQwhJ8lzfh6MCwJSGlFKUaBVLMmgWR0CnYU4iosI3dX2UKGgGaAloD0MI53EYzF/hD8CUhpRSlGgVSzJoFkdAp1+1uk1uSHV9lChoBmgJaA9DCPwBDwwg/A/AlIaUUpRoFUsyaBZHQKdlCJbdJrd1fZQoaAZoCWgPQwjncoOhDisRwJSGlFKUaBVLMmgWR0CnY9J0OmSAdX2UKGgGaAloD0MIqDXNO06xBMCUhpRSlGgVSzJoFkdAp2Jn1J17pnV9lChoBmgJaA9DCEevBigNVQDAlIaUUpRoFUsyaBZHQKdgz0lqrR11fZQoaAZoCWgPQwiTcYxkj/AJwJSGlFKUaBVLMmgWR0CnZhf9pAUtdX2UKGgGaAloD0MIRiV1ApoIBcCUhpRSlGgVSzJoFkdAp2ThosZpBXV9lChoBmgJaA9DCCZvgJnvAAvAlIaUUpRoFUsyaBZHQKdjdwLmZE51fZQoaAZoCWgPQwgIBDqTNpUJwJSGlFKUaBVLMmgWR0CnYd6A4GUwdX2UKGgGaAloD0MIpb+XwoOmAMCUhpRSlGgVSzJoFkdAp2cp7HAAQ3V9lChoBmgJaA9DCGUaTS7GUBDAlIaUUpRoFUsyaBZHQKdl85Xlr/N1fZQoaAZoCWgPQwgAxF29iowOwJSGlFKUaBVLMmgWR0CnZIj7ALy+dX2UKGgGaAloD0MIho2yfjNxD8CUhpRSlGgVSzJoFkdAp2Lwf6oES3V9lChoBmgJaA9DCNxI2SJp1wjAlIaUUpRoFUsyaBZHQKdoP71qWTp1fZQoaAZoCWgPQwgOhc/WwcH+v5SGlFKUaBVLMmgWR0CnZwlXRw6ydX2UKGgGaAloD0MIPIVcqWdBDMCUhpRSlGgVSzJoFkdAp2Wevt+kQHV9lChoBmgJaA9DCCz1LAjlHRjAlIaUUpRoFUsyaBZHQKdkBl5nlGR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.9.5", "Stable-Baselines3": "1.8.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.674654725380242, "std_reward": 1.0758430823499168, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-02T16:16:49.962490"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a670a70c62b4b8c8311efa2cc74919f6e57168c383500272ee1c743b287cbd5d
3
+ size 2381