software-vagabond commited on
Commit
04a6d4e
1 Parent(s): a9bc05b

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2051.60 +/- 77.97
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d69d549f7f8aad3999592caee75d2d32f11996feac06b6022935c3cd679612ee
3
+ size 129254
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f80c4e0d4c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f80c4e0d550>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f80c4e0d5e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f80c4e0d670>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f80c4e0d700>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f80c4e0d790>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f80c4e0d820>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f80c4e0d8b0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f80c4e0d940>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f80c4e0d9d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f80c4e0da60>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f80c4e0daf0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f80c4e0cb00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1685695239693135100,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL3VzZXIvLnZpcnR1YWxlbnZzL2RhdGFzY2llbmNlL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS91c2VyLy52aXJ0dWFsZW52cy9kYXRhc2NpZW5jZS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMQbK0Bk6em/9NKAP7HhyL9XZK2/UH21PLlZsr+deJY/JNF8PjshDjvlYV/AZFnfvHQctT0iwgS62GqBQOcmCj1EilA+3UipO8FnMUDBF7s8FMccPk1mmTnV7VPAv/vVvOPdL78nja+/IeJbwGhNtb/EGytADOnpv/TSgD+x4ci/V2Stv1B9tTy5WbK/nXiWP0xKRT07IQ47r21lwGRZ37zpXQe+IsIEugc0hkDnJgo9q35OP91IqTty0EFAwRe7PJIHhz5NZpk53RxPwL/71bzj3S+/J42vvyHiW8BoTbW/old/P7jJ3j5QFTA9nTkLP1lPDj+TJSs/ycYmP+Hbhb8YPLm+1QqOPguiUr/zAfy+3ZmOPz7I1T5oU7A99GpkP/9X3L7DSzS+3bQIPzAq3TyqMRS/kCFwv8iajT9YRDS+490vv1ioOj9EBpU+m7w0P8QbK0CP6em/9NKAP7HhyL9XZK2/UH21PLlZsr+deJY/3YpxvDshDjsaLVrAZFnfvJZkZ74iwgS6MpiBQOcmCj2yab0+3UipO9METEDBF7s84YOKPk1mmTlUilLAv/vVvOPdL78nja+/IeJbwGhNtb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADwi7I2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9maePAAAAACdf9y/AAAAANl1Dz4AAAAAKKrvPwAAAADpRiK8AAAAAKIF8z8AAAAArbfsvQAAAABG1fu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXjOKNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGxCVLwAAAAAX0v7vwAAAAB/qoo9AAAAAKtd5j8AAAAAT0H9vAAAAABCjwBAAAAAACk9Cb4AAAAA8K/fvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABViJTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICs4bO9AAAAAEhI7r8AAAAAP6gwvQAAAAA6Fvc/AAAAAMX1Q70AAAAAkbH/PwAAAAC0y+e9AAAAAIII/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADeMeY0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJYWjvQAAAAD5ge+/AAAAAM3Ei70AAAAAMQj5PwAAAABS3bQ9AAAAAD06/j8AAAAAZKWfPQAAAAAIetm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKHTEU7CBPOMAWyUTegDjAF0lEdAsNRXaBZpz3V9lChoBkdAoV5bakAPu2gHTegDaAhHQLDb61fmcON1fZQoaAZHQKLQf8yeqaRoB03oA2gIR0Cw2+uFtbcHdX2UKGgGR0Ciu9zuF6AwaAdN6ANoCEdAsNvrqQiiZnV9lChoBkdAoq2m3KB/Z2gHTegDaAhHQLDc9T/yXld1fZQoaAZHQKJy7eN1hb5oB03oA2gIR0Cw5FKebutwdX2UKGgGR0ChzCKV6eGxaAdN6ANoCEdAsORTF1jiGXV9lChoBkdAoknWymhufmgHTegDaAhHQLDkU1uzhP11fZQoaAZHQKNCSjSofjloB03oA2gIR0Cw5WmhM8HOdX2UKGgGR0Ci9Cgeq7yyaAdN6ANoCEdAsOyCVPepGXV9lChoBkdAouBxcZ9/jWgHTegDaAhHQLDsgnkT6BR1fZQoaAZHQKKjBqN6w+toB03oA2gIR0Cw7IK7ROUMdX2UKGgGR0Ci4jcIRh+faAdN6ANoCEdAsO2VrWRRuXV9lChoBkdAorK8I9kjHGgHTegDaAhHQLD0yjbi6xx1fZQoaAZHQKJ73yRSxaBoB03oA2gIR0Cw9Mps41gqdX2UKGgGR0Ci+y9bxEv1aAdN6ANoCEdAsPTKmMwUQHV9lChoBkdAomM4mLLpzWgHTegDaAhHQLD1zSflIVd1fZQoaAZHQKGPBdCVryloB03oA2gIR0Cw/hdBSk0rdX2UKGgGR0Ch+9noouwpaAdN6ANoCEdAsP4XaWX1J3V9lChoBkdAojZKcurZJ2gHTegDaAhHQLD+F8Swnpl1fZQoaAZHQKGuQh24d6toB03oA2gIR0Cw/4gZn+Q2dX2UKGgGR0CgyNzuv2XcaAdN6ANoCEdAsQenHdXT3XV9lChoBkdAoNNQam4y5GgHTegDaAhHQLEHp0ngHeJ1fZQoaAZHQKAd4fnwG4ZoB03oA2gIR0CxB6eLFXJYdX2UKGgGR0ChXv72L5ymaAdN6ANoCEdAsQjBPTG5tnV9lChoBkdAoiZAvWYnfGgHTegDaAhHQLEP7Kkl/pd1fZQoaAZHQKF9T08NhE1oB03oA2gIR0CxD+zIvJzUdX2UKGgGR0Chby0rK/21aAdN6ANoCEdAsQ/s5R0lq3V9lChoBkdAomA0L+glGGgHTegDaAhHQLEQ8DK5kLB1fZQoaAZHQKLxGDHOryVoB03oA2gIR0CxGIFtbcGkdX2UKGgGR0CigMwR5C4SaAdN6ANoCEdAsRiBjYqXnnV9lChoBkdAoofHAuZkTmgHTegDaAhHQLEYga37UG51fZQoaAZHQKKxUK508vFoB03oA2gIR0CxGZq7I1cddX2UKGgGR0CjOwbiqABlaAdN6ANoCEdAsSFlLdvbXnV9lChoBkdAoyJ4K8cuJ2gHTegDaAhHQLEhZVNpM6B1fZQoaAZHQKMQ5kxREWtoB03oA2gIR0CxIWV8w5/9dX2UKGgGR0Ch9jDWkJrtaAdN6ANoCEdAsSJh2HLzPXV9lChoBkdAorujL+xW1mgHTegDaAhHQLEpqY64lQd1fZQoaAZHQKKIx6eoUBZoB03oA2gIR0CxKam6K+BZdX2UKGgGR0CiiHEnLJS0aAdN6ANoCEdAsSmp24d6s3V9lChoBkdAokWO12JSBWgHTegDaAhHQLEqpPXTVlR1fZQoaAZHQKEHGXw9aEBoB03oA2gIR0CxMdkp/gBLdX2UKGgGR0ChiC/dqL0jaAdN6ANoCEdAsTHZVn27F3V9lChoBkdAoXnVWZJCjWgHTegDaAhHQLEx2Ysd1dR1fZQoaAZHQKIaetpVS4xoB03oA2gIR0CxMuFE3KjjdX2UKGgGR0CiynzGHYYjaAdN6ANoCEdAsTpN1DBuXXV9lChoBkdAochO0u14PmgHTegDaAhHQLE6TvoNd7h1fZQoaAZHQKJr0hW5paloB03oA2gIR0CxOk/I0ZWJdX2UKGgGR0CiAhsNUfgaaAdN6ANoCEdAsTtgNEw353V9lChoBkdAoeULsByS3mgHTegDaAhHQLFCmeizsyB1fZQoaAZHQKL087A+IM1oB03oA2gIR0CxQpoOYplSdX2UKGgGR0CiXdz06HTJaAdN6ANoCEdAsUKaM85jpnV9lChoBkdAogBLvgFX72gHTegDaAhHQLFDlO3UhFF1fZQoaAZHQKFh55/LDAJoB03oA2gIR0CxSrUKRdQgdX2UKGgGR0CiJJdfsu3+aAdN6ANoCEdAsUq1TVDrq3V9lChoBkdAojEcutfXw2gHTegDaAhHQLFKtX1J17p1fZQoaAZHQKGq/pTuOS5oB03oA2gIR0CxS73gDRtxdX2UKGgGR0ChMBiblRxcaAdN6ANoCEdAsVNUgLZzxXV9lChoBkdAoTAJA8jiXWgHTegDaAhHQLFTVKIznA91fZQoaAZHQKDfoRSxZ+xoB03oA2gIR0CxU1TD8+A3dX2UKGgGR0ChFG9UKiPAaAdN6ANoCEdAsVRXZJ04i3V9lChoBkdAoGGnATIvJ2gHTegDaAhHQLFb2XiBGx51fZQoaAZHQKDylXCj1wpoB03oA2gIR0CxW9mdNFjNdX2UKGgGR0CgPZaS9ugpaAdN6ANoCEdAsVvZwWFewHV9lChoBkdAn4/5ML4N7WgHTegDaAhHQLFc/4oqkM11fZQoaAZHQJxpi7kGRmtoB03oA2gIR0CxZKHvH93sdX2UKGgGR0CfpokvK2a2aAdN6ANoCEdAsWSiGXXyy3V9lChoBkdAn3kL2+PBBWgHTegDaAhHQLFkokBjnV51fZQoaAZHQKA8tBcAzYVoB03oA2gIR0CxZePtMPBjdX2UKGgGR0CgnqllCkXUaAdN6ANoCEdAsW3fIxQBP3V9lChoBkdAoa8MYwZflmgHTegDaAhHQLFt33AVO9F1fZQoaAZHQKB/odbxEv1oB03oA2gIR0Cxbd/FWGRFdX2UKGgGR0ChFUhfjS5RaAdN6ANoCEdAsW7zmlqJuXV9lChoBkdAoSMlvGZNPGgHTegDaAhHQLF2PCXhOxl1fZQoaAZHQKG4uagmJFdoB03oA2gIR0CxdjxE8aGYdX2UKGgGR0Ch0+IxpL26aAdN6ANoCEdAsXY8ddVvM3V9lChoBkdAoa0ht1p0wWgHTegDaAhHQLF3X7DVH4J1fZQoaAZHQJ3wMxvegthoB03oA2gIR0CxfpUvoNd7dX2UKGgGR0CeCx1cdHUdaAdN6ANoCEdAsX6VU5uIh3V9lChoBkdAmryuotL+P2gHTegDaAhHQLF+lXA/LTx1fZQoaAZHQJrYT863iJhoB03oA2gIR0Cxf55RoAXEdX2UKGgGR0CbY9DhtLteaAdN6ANoCEdAsYc9ke6qbXV9lChoBkdAnSSxGhEjPmgHTegDaAhHQLGHPcWj4591fZQoaAZHQJrCfJU5uIhoB03oA2gIR0Cxhz4V6/qPdX2UKGgGR0CfMT1jAi3YaAdN6ANoCEdAsYhsG6f8M3V9lChoBkdAn0CjJEH+qGgHTegDaAhHQLGPcBjnV5N1fZQoaAZHQKC2S8e0XxhoB03oA2gIR0Cxj3A84giedX2UKGgGR0CerYB/qgRLaAdN6ANoCEdAsY9weeWfLHV9lChoBkdAncWx/NJOFmgHTegDaAhHQLGQiIaLn9x1fZQoaAZHQJ6VXbL2YfJoB03oA2gIR0CxmCjiCJ40dX2UKGgGR0Cff19LYf4iaAdN6ANoCEdAsZgpBHCoCXV9lChoBkdAnVjxzijtX2gHTegDaAhHQLGYKSR8twt1fZQoaAZHQJyqFd+ocaRoB03oA2gIR0CxmTBeHBUJdX2UKGgGR0CdqkpJwsGxaAdN6ANoCEdAsaClCzC1qnV9lChoBkdAng9RsVLzw2gHTegDaAhHQLGgpS2H+Id1fZQoaAZHQJ9ek8KXv6VoB03oA2gIR0CxoKVOTJQtdX2UKGgGR0Cfdcn/1g6VaAdN6ANoCEdAsaHAiLVFyHV9lChoBkdAnx1RqTKT0WgHTegDaAhHQLGpTWq94/x1fZQoaAZHQJ41n9deIEdoB03oA2gIR0CxqU2j9GZvdX2UKGgGR0CgUzcVpKzzaAdN6ANoCEdAsalNxxT853VlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0e6cfa49a807bfbb899c21da89dd60893eab081514b45bf3a161531b1960c7f
3
+ size 56126
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86f6c3484424e38bc916d1b4fc8a70fe05a5c864baabc699122009d8cde36639
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Fri Apr 2 22:23:49 UTC 2021
2
+ - Python: 3.9.5
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 1.11.0+cu102
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.2
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f80c4e0d4c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f80c4e0d550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f80c4e0d5e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f80c4e0d670>", "_build": "<function ActorCriticPolicy._build at 0x7f80c4e0d700>", "forward": "<function ActorCriticPolicy.forward at 0x7f80c4e0d790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f80c4e0d820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f80c4e0d8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f80c4e0d940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f80c4e0d9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f80c4e0da60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f80c4e0daf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f80c4e0cb00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685695239693135100, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL3VzZXIvLnZpcnR1YWxlbnZzL2RhdGFzY2llbmNlL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS91c2VyLy52aXJ0dWFsZW52cy9kYXRhc2NpZW5jZS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMQbK0Bk6em/9NKAP7HhyL9XZK2/UH21PLlZsr+deJY/JNF8PjshDjvlYV/AZFnfvHQctT0iwgS62GqBQOcmCj1EilA+3UipO8FnMUDBF7s8FMccPk1mmTnV7VPAv/vVvOPdL78nja+/IeJbwGhNtb/EGytADOnpv/TSgD+x4ci/V2Stv1B9tTy5WbK/nXiWP0xKRT07IQ47r21lwGRZ37zpXQe+IsIEugc0hkDnJgo9q35OP91IqTty0EFAwRe7PJIHhz5NZpk53RxPwL/71bzj3S+/J42vvyHiW8BoTbW/old/P7jJ3j5QFTA9nTkLP1lPDj+TJSs/ycYmP+Hbhb8YPLm+1QqOPguiUr/zAfy+3ZmOPz7I1T5oU7A99GpkP/9X3L7DSzS+3bQIPzAq3TyqMRS/kCFwv8iajT9YRDS+490vv1ioOj9EBpU+m7w0P8QbK0CP6em/9NKAP7HhyL9XZK2/UH21PLlZsr+deJY/3YpxvDshDjsaLVrAZFnfvJZkZ74iwgS6MpiBQOcmCj2yab0+3UipO9METEDBF7s84YOKPk1mmTlUilLAv/vVvOPdL78nja+/IeJbwGhNtb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADwi7I2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9maePAAAAACdf9y/AAAAANl1Dz4AAAAAKKrvPwAAAADpRiK8AAAAAKIF8z8AAAAArbfsvQAAAABG1fu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXjOKNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGxCVLwAAAAAX0v7vwAAAAB/qoo9AAAAAKtd5j8AAAAAT0H9vAAAAABCjwBAAAAAACk9Cb4AAAAA8K/fvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABViJTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICs4bO9AAAAAEhI7r8AAAAAP6gwvQAAAAA6Fvc/AAAAAMX1Q70AAAAAkbH/PwAAAAC0y+e9AAAAAIII/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADeMeY0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJYWjvQAAAAD5ge+/AAAAAM3Ei70AAAAAMQj5PwAAAABS3bQ9AAAAAD06/j8AAAAAZKWfPQAAAAAIetm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKHTEU7CBPOMAWyUTegDjAF0lEdAsNRXaBZpz3V9lChoBkdAoV5bakAPu2gHTegDaAhHQLDb61fmcON1fZQoaAZHQKLQf8yeqaRoB03oA2gIR0Cw2+uFtbcHdX2UKGgGR0Ciu9zuF6AwaAdN6ANoCEdAsNvrqQiiZnV9lChoBkdAoq2m3KB/Z2gHTegDaAhHQLDc9T/yXld1fZQoaAZHQKJy7eN1hb5oB03oA2gIR0Cw5FKebutwdX2UKGgGR0ChzCKV6eGxaAdN6ANoCEdAsORTF1jiGXV9lChoBkdAoknWymhufmgHTegDaAhHQLDkU1uzhP11fZQoaAZHQKNCSjSofjloB03oA2gIR0Cw5WmhM8HOdX2UKGgGR0Ci9Cgeq7yyaAdN6ANoCEdAsOyCVPepGXV9lChoBkdAouBxcZ9/jWgHTegDaAhHQLDsgnkT6BR1fZQoaAZHQKKjBqN6w+toB03oA2gIR0Cw7IK7ROUMdX2UKGgGR0Ci4jcIRh+faAdN6ANoCEdAsO2VrWRRuXV9lChoBkdAorK8I9kjHGgHTegDaAhHQLD0yjbi6xx1fZQoaAZHQKJ73yRSxaBoB03oA2gIR0Cw9Mps41gqdX2UKGgGR0Ci+y9bxEv1aAdN6ANoCEdAsPTKmMwUQHV9lChoBkdAomM4mLLpzWgHTegDaAhHQLD1zSflIVd1fZQoaAZHQKGPBdCVryloB03oA2gIR0Cw/hdBSk0rdX2UKGgGR0Ch+9noouwpaAdN6ANoCEdAsP4XaWX1J3V9lChoBkdAojZKcurZJ2gHTegDaAhHQLD+F8Swnpl1fZQoaAZHQKGuQh24d6toB03oA2gIR0Cw/4gZn+Q2dX2UKGgGR0CgyNzuv2XcaAdN6ANoCEdAsQenHdXT3XV9lChoBkdAoNNQam4y5GgHTegDaAhHQLEHp0ngHeJ1fZQoaAZHQKAd4fnwG4ZoB03oA2gIR0CxB6eLFXJYdX2UKGgGR0ChXv72L5ymaAdN6ANoCEdAsQjBPTG5tnV9lChoBkdAoiZAvWYnfGgHTegDaAhHQLEP7Kkl/pd1fZQoaAZHQKF9T08NhE1oB03oA2gIR0CxD+zIvJzUdX2UKGgGR0Chby0rK/21aAdN6ANoCEdAsQ/s5R0lq3V9lChoBkdAomA0L+glGGgHTegDaAhHQLEQ8DK5kLB1fZQoaAZHQKLxGDHOryVoB03oA2gIR0CxGIFtbcGkdX2UKGgGR0CigMwR5C4SaAdN6ANoCEdAsRiBjYqXnnV9lChoBkdAoofHAuZkTmgHTegDaAhHQLEYga37UG51fZQoaAZHQKKxUK508vFoB03oA2gIR0CxGZq7I1cddX2UKGgGR0CjOwbiqABlaAdN6ANoCEdAsSFlLdvbXnV9lChoBkdAoyJ4K8cuJ2gHTegDaAhHQLEhZVNpM6B1fZQoaAZHQKMQ5kxREWtoB03oA2gIR0CxIWV8w5/9dX2UKGgGR0Ch9jDWkJrtaAdN6ANoCEdAsSJh2HLzPXV9lChoBkdAorujL+xW1mgHTegDaAhHQLEpqY64lQd1fZQoaAZHQKKIx6eoUBZoB03oA2gIR0CxKam6K+BZdX2UKGgGR0CiiHEnLJS0aAdN6ANoCEdAsSmp24d6s3V9lChoBkdAokWO12JSBWgHTegDaAhHQLEqpPXTVlR1fZQoaAZHQKEHGXw9aEBoB03oA2gIR0CxMdkp/gBLdX2UKGgGR0ChiC/dqL0jaAdN6ANoCEdAsTHZVn27F3V9lChoBkdAoXnVWZJCjWgHTegDaAhHQLEx2Ysd1dR1fZQoaAZHQKIaetpVS4xoB03oA2gIR0CxMuFE3KjjdX2UKGgGR0CiynzGHYYjaAdN6ANoCEdAsTpN1DBuXXV9lChoBkdAochO0u14PmgHTegDaAhHQLE6TvoNd7h1fZQoaAZHQKJr0hW5paloB03oA2gIR0CxOk/I0ZWJdX2UKGgGR0CiAhsNUfgaaAdN6ANoCEdAsTtgNEw353V9lChoBkdAoeULsByS3mgHTegDaAhHQLFCmeizsyB1fZQoaAZHQKL087A+IM1oB03oA2gIR0CxQpoOYplSdX2UKGgGR0CiXdz06HTJaAdN6ANoCEdAsUKaM85jpnV9lChoBkdAogBLvgFX72gHTegDaAhHQLFDlO3UhFF1fZQoaAZHQKFh55/LDAJoB03oA2gIR0CxSrUKRdQgdX2UKGgGR0CiJJdfsu3+aAdN6ANoCEdAsUq1TVDrq3V9lChoBkdAojEcutfXw2gHTegDaAhHQLFKtX1J17p1fZQoaAZHQKGq/pTuOS5oB03oA2gIR0CxS73gDRtxdX2UKGgGR0ChMBiblRxcaAdN6ANoCEdAsVNUgLZzxXV9lChoBkdAoTAJA8jiXWgHTegDaAhHQLFTVKIznA91fZQoaAZHQKDfoRSxZ+xoB03oA2gIR0CxU1TD8+A3dX2UKGgGR0ChFG9UKiPAaAdN6ANoCEdAsVRXZJ04i3V9lChoBkdAoGGnATIvJ2gHTegDaAhHQLFb2XiBGx51fZQoaAZHQKDylXCj1wpoB03oA2gIR0CxW9mdNFjNdX2UKGgGR0CgPZaS9ugpaAdN6ANoCEdAsVvZwWFewHV9lChoBkdAn4/5ML4N7WgHTegDaAhHQLFc/4oqkM11fZQoaAZHQJxpi7kGRmtoB03oA2gIR0CxZKHvH93sdX2UKGgGR0CfpokvK2a2aAdN6ANoCEdAsWSiGXXyy3V9lChoBkdAn3kL2+PBBWgHTegDaAhHQLFkokBjnV51fZQoaAZHQKA8tBcAzYVoB03oA2gIR0CxZePtMPBjdX2UKGgGR0CgnqllCkXUaAdN6ANoCEdAsW3fIxQBP3V9lChoBkdAoa8MYwZflmgHTegDaAhHQLFt33AVO9F1fZQoaAZHQKB/odbxEv1oB03oA2gIR0Cxbd/FWGRFdX2UKGgGR0ChFUhfjS5RaAdN6ANoCEdAsW7zmlqJuXV9lChoBkdAoSMlvGZNPGgHTegDaAhHQLF2PCXhOxl1fZQoaAZHQKG4uagmJFdoB03oA2gIR0CxdjxE8aGYdX2UKGgGR0Ch0+IxpL26aAdN6ANoCEdAsXY8ddVvM3V9lChoBkdAoa0ht1p0wWgHTegDaAhHQLF3X7DVH4J1fZQoaAZHQJ3wMxvegthoB03oA2gIR0CxfpUvoNd7dX2UKGgGR0CeCx1cdHUdaAdN6ANoCEdAsX6VU5uIh3V9lChoBkdAmryuotL+P2gHTegDaAhHQLF+lXA/LTx1fZQoaAZHQJrYT863iJhoB03oA2gIR0Cxf55RoAXEdX2UKGgGR0CbY9DhtLteaAdN6ANoCEdAsYc9ke6qbXV9lChoBkdAnSSxGhEjPmgHTegDaAhHQLGHPcWj4591fZQoaAZHQJrCfJU5uIhoB03oA2gIR0Cxhz4V6/qPdX2UKGgGR0CfMT1jAi3YaAdN6ANoCEdAsYhsG6f8M3V9lChoBkdAn0CjJEH+qGgHTegDaAhHQLGPcBjnV5N1fZQoaAZHQKC2S8e0XxhoB03oA2gIR0Cxj3A84giedX2UKGgGR0CerYB/qgRLaAdN6ANoCEdAsY9weeWfLHV9lChoBkdAncWx/NJOFmgHTegDaAhHQLGQiIaLn9x1fZQoaAZHQJ6VXbL2YfJoB03oA2gIR0CxmCjiCJ40dX2UKGgGR0Cff19LYf4iaAdN6ANoCEdAsZgpBHCoCXV9lChoBkdAnVjxzijtX2gHTegDaAhHQLGYKSR8twt1fZQoaAZHQJyqFd+ocaRoB03oA2gIR0CxmTBeHBUJdX2UKGgGR0CdqkpJwsGxaAdN6ANoCEdAsaClCzC1qnV9lChoBkdAng9RsVLzw2gHTegDaAhHQLGgpS2H+Id1fZQoaAZHQJ9ek8KXv6VoB03oA2gIR0CxoKVOTJQtdX2UKGgGR0Cfdcn/1g6VaAdN6ANoCEdAsaHAiLVFyHV9lChoBkdAnx1RqTKT0WgHTegDaAhHQLGpTWq94/x1fZQoaAZHQJ41n9deIEdoB03oA2gIR0CxqU2j9GZvdX2UKGgGR0CgUzcVpKzzaAdN6ANoCEdAsalNxxT853VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.9.5", "Stable-Baselines3": "1.8.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2051.5974017607373, "std_reward": 77.9696649966106, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-02T15:22:03.577703"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b6153875d7ccf360cb46d737f8e9adae27a328394b10cc783f7b94ceafb5be3
3
+ size 2252