sofia-todeschini
commited on
Commit
•
68a5ef6
1
Parent(s):
0520fdd
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: PubMedBERT-Large-LitCovid-1.4
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# PubMedBERT-Large-LitCovid-1.4
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.6105
|
20 |
+
- Hamming loss: 0.0623
|
21 |
+
- F1 micro: 0.6724
|
22 |
+
- F1 macro: 0.5303
|
23 |
+
- F1 weighted: 0.7292
|
24 |
+
- F1 samples: 0.6741
|
25 |
+
- Precision micro: 0.5423
|
26 |
+
- Precision macro: 0.4146
|
27 |
+
- Precision weighted: 0.6499
|
28 |
+
- Precision samples: 0.5845
|
29 |
+
- Recall micro: 0.8849
|
30 |
+
- Recall macro: 0.8178
|
31 |
+
- Recall weighted: 0.8849
|
32 |
+
- Recall samples: 0.9022
|
33 |
+
- Roc Auc: 0.9133
|
34 |
+
- Accuracy: 0.1313
|
35 |
+
|
36 |
+
## Model description
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Intended uses & limitations
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training and evaluation data
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training procedure
|
49 |
+
|
50 |
+
### Training hyperparameters
|
51 |
+
|
52 |
+
The following hyperparameters were used during training:
|
53 |
+
- learning_rate: 2e-05
|
54 |
+
- train_batch_size: 8
|
55 |
+
- eval_batch_size: 8
|
56 |
+
- seed: 42
|
57 |
+
- gradient_accumulation_steps: 4
|
58 |
+
- total_train_batch_size: 32
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 5
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Hamming loss | F1 micro | F1 macro | F1 weighted | F1 samples | Precision micro | Precision macro | Precision weighted | Precision samples | Recall micro | Recall macro | Recall weighted | Recall samples | Roc Auc | Accuracy |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------:|:--------:|:--------:|:-----------:|:----------:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:------------:|:---------------:|:--------------:|:-------:|:--------:|
|
68 |
+
| 0.589 | 1.0 | 1151 | 0.5719 | 0.1031 | 0.5554 | 0.4307 | 0.6704 | 0.5629 | 0.4034 | 0.3213 | 0.5843 | 0.4435 | 0.8909 | 0.8673 | 0.8909 | 0.9062 | 0.8941 | 0.0363 |
|
69 |
+
| 0.4668 | 2.0 | 2302 | 0.5438 | 0.0836 | 0.6082 | 0.4623 | 0.6974 | 0.6147 | 0.4599 | 0.3478 | 0.6098 | 0.5052 | 0.8976 | 0.8556 | 0.8976 | 0.9123 | 0.9077 | 0.0774 |
|
70 |
+
| 0.3791 | 3.0 | 3453 | 0.5510 | 0.0790 | 0.6225 | 0.4829 | 0.7070 | 0.6247 | 0.4754 | 0.3661 | 0.6205 | 0.5140 | 0.9012 | 0.8541 | 0.9012 | 0.9165 | 0.9119 | 0.0759 |
|
71 |
+
| 0.307 | 4.0 | 4605 | 0.5954 | 0.0635 | 0.6688 | 0.5235 | 0.7280 | 0.6689 | 0.5371 | 0.4078 | 0.6477 | 0.5767 | 0.8863 | 0.8212 | 0.8863 | 0.9036 | 0.9134 | 0.1229 |
|
72 |
+
| 0.2687 | 5.0 | 5755 | 0.6105 | 0.0623 | 0.6724 | 0.5303 | 0.7292 | 0.6741 | 0.5423 | 0.4146 | 0.6499 | 0.5845 | 0.8849 | 0.8178 | 0.8849 | 0.9022 | 0.9133 | 0.1313 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.28.0
|
78 |
+
- Pytorch 2.3.0+cu121
|
79 |
+
- Datasets 2.20.0
|
80 |
+
- Tokenizers 0.13.3
|