Suraj Narayanan Sasikumar
commited on
Commit
•
db7a329
1
Parent(s):
086fc01
handler for endpoint
Browse files- handler.py +55 -0
handler.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import torch
|
3 |
+
from diffusers import DPMSolverMultistepScheduler, StableDiffusionXLPipeline
|
4 |
+
from PIL import Image
|
5 |
+
import base64
|
6 |
+
from io import BytesIO
|
7 |
+
|
8 |
+
|
9 |
+
# set device
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
|
12 |
+
if device.type != "cuda":
|
13 |
+
raise ValueError("need to run on GPU")
|
14 |
+
|
15 |
+
|
16 |
+
class EndpointHandler:
|
17 |
+
def __init__(self, path=""):
|
18 |
+
# load StableDiffusionInpaintPipeline pipeline
|
19 |
+
self.pipe = StableDiffusionXLPipeline.from_pretrained(
|
20 |
+
path, torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
21 |
+
)
|
22 |
+
# use DPMSolverMultistepScheduler
|
23 |
+
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
24 |
+
self.pipe.scheduler.config
|
25 |
+
)
|
26 |
+
# move to device
|
27 |
+
self.pipe = self.pipe.to(device)
|
28 |
+
|
29 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
30 |
+
"""
|
31 |
+
:param data: A dictionary contains `inputs` and optional `image` field.
|
32 |
+
:return: A dictionary with `image` field contains image in base64.
|
33 |
+
"""
|
34 |
+
prompt = data.pop("inputs", data)
|
35 |
+
|
36 |
+
# hyperparamters
|
37 |
+
num_inference_steps = data.pop("num_inference_steps", 30)
|
38 |
+
guidance_scale = data.pop("guidance_scale", 8)
|
39 |
+
negative_prompt = data.pop("negative_prompt", None)
|
40 |
+
height = data.pop("height", None)
|
41 |
+
width = data.pop("width", None)
|
42 |
+
|
43 |
+
# run inference pipeline
|
44 |
+
out = self.pipe(
|
45 |
+
prompt,
|
46 |
+
num_inference_steps=num_inference_steps,
|
47 |
+
guidance_scale=guidance_scale,
|
48 |
+
num_images_per_prompt=1,
|
49 |
+
negative_prompt=negative_prompt,
|
50 |
+
height=height,
|
51 |
+
width=width,
|
52 |
+
)
|
53 |
+
|
54 |
+
# return first generate PIL image
|
55 |
+
return out.images[0]
|