add refiner
Browse files- handler.py +50 -15
handler.py
CHANGED
@@ -16,40 +16,75 @@ if device.type != "cuda":
|
|
16 |
class EndpointHandler:
|
17 |
def __init__(self, path=""):
|
18 |
# load StableDiffusionInpaintPipeline pipeline
|
19 |
-
self.
|
20 |
path, torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
21 |
)
|
22 |
# use DPMSolverMultistepScheduler
|
23 |
-
self.
|
24 |
-
self.
|
25 |
)
|
26 |
# move to device
|
27 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
30 |
"""
|
31 |
:param data: A dictionary contains `inputs` and optional `image` field.
|
32 |
:return: A dictionary with `image` field contains image in base64.
|
33 |
"""
|
34 |
-
prompt = data.pop("inputs",
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# hyperparamters
|
|
|
37 |
num_inference_steps = data.pop("num_inference_steps", 30)
|
38 |
guidance_scale = data.pop("guidance_scale", 8)
|
39 |
negative_prompt = data.pop("negative_prompt", None)
|
|
|
40 |
height = data.pop("height", None)
|
41 |
width = data.pop("width", None)
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
# encode image as base 64
|
55 |
buffered = BytesIO()
|
|
|
16 |
class EndpointHandler:
|
17 |
def __init__(self, path=""):
|
18 |
# load StableDiffusionInpaintPipeline pipeline
|
19 |
+
self.base = StableDiffusionXLPipeline.from_pretrained(
|
20 |
path, torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
21 |
)
|
22 |
# use DPMSolverMultistepScheduler
|
23 |
+
self.base.scheduler = DPMSolverMultistepScheduler.from_config(
|
24 |
+
self.base.scheduler.config
|
25 |
)
|
26 |
# move to device
|
27 |
+
self.base = self.base.to(device)
|
28 |
+
self.base.unet = torch.compile(self.base.unet, mode="reduce-overhead", fullgraph=True)
|
29 |
+
|
30 |
+
self.refiner = StableDiffusionXLPipeline.from_pretrained(
|
31 |
+
"socialtrait/stable-diffusion-xl-refiner-1.0-infendpoint",
|
32 |
+
text_encoder_2=self.base.text_encoder_2,
|
33 |
+
vae=self.base.vae,
|
34 |
+
torch_dtype=torch.float16,
|
35 |
+
use_safetensors=True,
|
36 |
+
variant="fp16",
|
37 |
+
)
|
38 |
+
# use DPMSolverMultistepScheduler
|
39 |
+
self.refiner.scheduler = DPMSolverMultistepScheduler.from_config(
|
40 |
+
self.refiner.scheduler.config
|
41 |
+
)
|
42 |
+
self.refiner = self.refiner.to(device)
|
43 |
+
self.refiner.unet = torch.compile(self.refiner.unet, mode="reduce-overhead", fullgraph=True)
|
44 |
|
45 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
46 |
"""
|
47 |
:param data: A dictionary contains `inputs` and optional `image` field.
|
48 |
:return: A dictionary with `image` field contains image in base64.
|
49 |
"""
|
50 |
+
prompt = data.pop("inputs", None)
|
51 |
+
|
52 |
+
if prompt is None:
|
53 |
+
return {"error": "Please provide a prompt"}
|
54 |
+
|
55 |
|
56 |
# hyperparamters
|
57 |
+
use_refiner = True if data.pop("use_refiner", False) else False
|
58 |
num_inference_steps = data.pop("num_inference_steps", 30)
|
59 |
guidance_scale = data.pop("guidance_scale", 8)
|
60 |
negative_prompt = data.pop("negative_prompt", None)
|
61 |
+
high_noise_frac = data.pop("high_noise_frac", 0.8)
|
62 |
height = data.pop("height", None)
|
63 |
width = data.pop("width", None)
|
64 |
|
65 |
+
if use_refiner:
|
66 |
+
image = self.base(
|
67 |
+
prompt=prompt,
|
68 |
+
num_inference_steps=num_inference_steps,
|
69 |
+
denoising_end=high_noise_frac,
|
70 |
+
output_type="latent",
|
71 |
+
).images
|
72 |
+
out = self.refiner(
|
73 |
+
prompt=prompt,
|
74 |
+
num_inference_steps=num_inference_steps,
|
75 |
+
denoising_start=high_noise_frac,
|
76 |
+
image=image,
|
77 |
+
)
|
78 |
+
else:
|
79 |
+
out = self.pipe(
|
80 |
+
prompt,
|
81 |
+
num_inference_steps=num_inference_steps,
|
82 |
+
guidance_scale=guidance_scale,
|
83 |
+
num_images_per_prompt=1,
|
84 |
+
negative_prompt=negative_prompt,
|
85 |
+
height=height,
|
86 |
+
width=width,
|
87 |
+
)
|
88 |
|
89 |
# encode image as base 64
|
90 |
buffered = BytesIO()
|