Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +454 -0
- added_tokens.json +0 -0
- config.json +25 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +0 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,454 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ko
|
4 |
+
library_name: sentence-transformers
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- generated_from_trainer
|
10 |
+
- dataset_size:11668
|
11 |
+
- loss:CosineSimilarityLoss
|
12 |
+
datasets:
|
13 |
+
- klue/klue
|
14 |
+
metrics:
|
15 |
+
- pearson_cosine
|
16 |
+
- spearman_cosine
|
17 |
+
- pearson_manhattan
|
18 |
+
- spearman_manhattan
|
19 |
+
- pearson_euclidean
|
20 |
+
- spearman_euclidean
|
21 |
+
- pearson_dot
|
22 |
+
- spearman_dot
|
23 |
+
- pearson_max
|
24 |
+
- spearman_max
|
25 |
+
widget:
|
26 |
+
- source_sentence: 이는 지난 15일 개최된 제1차 주요국 외교장관간 협의에 뒤이은 것이다.
|
27 |
+
sentences:
|
28 |
+
- 100일간의 유럽 여행 중 단연 최고의 숙소였습니다!
|
29 |
+
- 이것은 7월 15일에 열린 주요 국가의 외무 장관들 간의 첫 번째 회담에 이은 것입니다.
|
30 |
+
- 거실옆 작은 방에도 싱글 침대가 두개 있습니다.
|
31 |
+
- source_sentence: 3000만원 이하 소액대출은 지역신용보증재단 심사를 기업은행에 위탁하기로 했다.
|
32 |
+
sentences:
|
33 |
+
- 그 집은 두 사람이 살기에 충분히 크고 깨끗했습니다.
|
34 |
+
- 3,000만원 미만의 소규모 대출은 기업은행에 의해 국내 신용보증재단을 검토하도록 의뢰될 것입니다.
|
35 |
+
- 지하철, 버스, 기차 모두 편리했습니다.
|
36 |
+
- source_sentence: 공간은 4명의 성인 가족이 사용하기에 부족함이 없었고.
|
37 |
+
sentences:
|
38 |
+
- 특히 모든 부처 장관들이 책상이 아닌 현장에서 직접 방역과 민생 경제의 중심에 서 주시기 바랍니다.
|
39 |
+
- 구시가까지 걸어서 15분 정도 걸립니다.
|
40 |
+
- 그 공간은 4인 가족에게는 충분하지 않았습니다.
|
41 |
+
- source_sentence: 클락키까지 걸어서 10분 정도 걸려요.
|
42 |
+
sentences:
|
43 |
+
- 가족 여행이나 4명정도 같이 가는 일행은 정말 좋은 곳 같아요
|
44 |
+
- 외출 시 방범 모드는 어떻게 바꿔?
|
45 |
+
- 타이페이 메인 역까지 걸어서 10분 정도 걸립니다.
|
46 |
+
- source_sentence: SR은 동대구·김천구미·신경주역에서 승하차하는 모든 국민에게 운임 10%를 할인해 준다.
|
47 |
+
sentences:
|
48 |
+
- 그 방은 두 사람이 쓰기에는 조금 좁아요.
|
49 |
+
- 수강신청 하는 날짜가 어느 날짜인지 아시는지요?
|
50 |
+
- SR은 동대구역, 김천구미역, 신주역을 오가는 모든 승객을 대상으로 요금을 10% 할인해 드립니다.
|
51 |
+
pipeline_tag: sentence-similarity
|
52 |
+
model-index:
|
53 |
+
- name: SentenceTransformer
|
54 |
+
results:
|
55 |
+
- task:
|
56 |
+
type: semantic-similarity
|
57 |
+
name: Semantic Similarity
|
58 |
+
dataset:
|
59 |
+
name: sts dev
|
60 |
+
type: sts-dev
|
61 |
+
metrics:
|
62 |
+
- type: pearson_cosine
|
63 |
+
value: 0.8785992855454161
|
64 |
+
name: Pearson Cosine
|
65 |
+
- type: spearman_cosine
|
66 |
+
value: 0.8765036144050727
|
67 |
+
name: Spearman Cosine
|
68 |
+
- type: pearson_manhattan
|
69 |
+
value: 0.8588761762441095
|
70 |
+
name: Pearson Manhattan
|
71 |
+
- type: spearman_manhattan
|
72 |
+
value: 0.8581833536546336
|
73 |
+
name: Spearman Manhattan
|
74 |
+
- type: pearson_euclidean
|
75 |
+
value: 0.8595449022883033
|
76 |
+
name: Pearson Euclidean
|
77 |
+
- type: spearman_euclidean
|
78 |
+
value: 0.8596989746846129
|
79 |
+
name: Spearman Euclidean
|
80 |
+
- type: pearson_dot
|
81 |
+
value: 0.8518252319365899
|
82 |
+
name: Pearson Dot
|
83 |
+
- type: spearman_dot
|
84 |
+
value: 0.8478860246063491
|
85 |
+
name: Spearman Dot
|
86 |
+
- type: pearson_max
|
87 |
+
value: 0.8785992855454161
|
88 |
+
name: Pearson Max
|
89 |
+
- type: spearman_max
|
90 |
+
value: 0.8765036144050727
|
91 |
+
name: Spearman Max
|
92 |
+
---
|
93 |
+
|
94 |
+
# SentenceTransformer
|
95 |
+
|
96 |
+
This is a [sentence-transformers](https://www.SBERT.net) model trained on the [klue/klue](https://huggingface.co/datasets/klue/klue) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
97 |
+
|
98 |
+
## Model Details
|
99 |
+
|
100 |
+
### Model Description
|
101 |
+
- **Model Type:** Sentence Transformer
|
102 |
+
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
103 |
+
- **Maximum Sequence Length:** 512 tokens
|
104 |
+
- **Output Dimensionality:** 768 tokens
|
105 |
+
- **Similarity Function:** Cosine Similarity
|
106 |
+
- **Training Dataset:**
|
107 |
+
- [klue/klue](https://huggingface.co/datasets/klue/klue)
|
108 |
+
- **Language:** ko
|
109 |
+
<!-- - **License:** Unknown -->
|
110 |
+
|
111 |
+
### Model Sources
|
112 |
+
|
113 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
114 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
115 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
116 |
+
|
117 |
+
### Full Model Architecture
|
118 |
+
|
119 |
+
```
|
120 |
+
SentenceTransformer(
|
121 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
122 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
123 |
+
)
|
124 |
+
```
|
125 |
+
|
126 |
+
## Usage
|
127 |
+
|
128 |
+
### Direct Usage (Sentence Transformers)
|
129 |
+
|
130 |
+
First install the Sentence Transformers library:
|
131 |
+
|
132 |
+
```bash
|
133 |
+
pip install -U sentence-transformers
|
134 |
+
```
|
135 |
+
|
136 |
+
Then you can load this model and run inference.
|
137 |
+
```python
|
138 |
+
from sentence_transformers import SentenceTransformer
|
139 |
+
|
140 |
+
# Download from the 🤗 Hub
|
141 |
+
model = SentenceTransformer("snunlp/KR-SBERT-Medium-extended-klueNLItriplet_PARpair_QApair-klueSTS")
|
142 |
+
# Run inference
|
143 |
+
sentences = [
|
144 |
+
'SR은 동대구·김천구미·신경주역에서 승하차하는 모든 국민에게 운임 10%를 할인해 준다.',
|
145 |
+
'SR은 동대구역, 김천구미역, 신주역을 오가는 모든 승객을 대상으로 요금을 10% 할인해 드립니다.',
|
146 |
+
'수강신청 하는 날짜가 어느 날짜인지 아시는지요?',
|
147 |
+
]
|
148 |
+
embeddings = model.encode(sentences)
|
149 |
+
print(embeddings.shape)
|
150 |
+
# [3, 768]
|
151 |
+
|
152 |
+
# Get the similarity scores for the embeddings
|
153 |
+
similarities = model.similarity(embeddings, embeddings)
|
154 |
+
print(similarities.shape)
|
155 |
+
# [3, 3]
|
156 |
+
```
|
157 |
+
|
158 |
+
<!--
|
159 |
+
### Direct Usage (Transformers)
|
160 |
+
|
161 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
162 |
+
|
163 |
+
</details>
|
164 |
+
-->
|
165 |
+
|
166 |
+
<!--
|
167 |
+
### Downstream Usage (Sentence Transformers)
|
168 |
+
|
169 |
+
You can finetune this model on your own dataset.
|
170 |
+
|
171 |
+
<details><summary>Click to expand</summary>
|
172 |
+
|
173 |
+
</details>
|
174 |
+
-->
|
175 |
+
|
176 |
+
<!--
|
177 |
+
### Out-of-Scope Use
|
178 |
+
|
179 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
180 |
+
-->
|
181 |
+
|
182 |
+
## Evaluation
|
183 |
+
|
184 |
+
### Metrics
|
185 |
+
|
186 |
+
#### Semantic Similarity
|
187 |
+
* Dataset: `sts-dev`
|
188 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
189 |
+
|
190 |
+
| Metric | Value |
|
191 |
+
|:--------------------|:-----------|
|
192 |
+
| pearson_cosine | 0.8786 |
|
193 |
+
| **spearman_cosine** | **0.8765** |
|
194 |
+
| pearson_manhattan | 0.8589 |
|
195 |
+
| spearman_manhattan | 0.8582 |
|
196 |
+
| pearson_euclidean | 0.8595 |
|
197 |
+
| spearman_euclidean | 0.8597 |
|
198 |
+
| pearson_dot | 0.8518 |
|
199 |
+
| spearman_dot | 0.8479 |
|
200 |
+
| pearson_max | 0.8786 |
|
201 |
+
| spearman_max | 0.8765 |
|
202 |
+
|
203 |
+
<!--
|
204 |
+
## Bias, Risks and Limitations
|
205 |
+
|
206 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
207 |
+
-->
|
208 |
+
|
209 |
+
<!--
|
210 |
+
### Recommendations
|
211 |
+
|
212 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
213 |
+
-->
|
214 |
+
|
215 |
+
## Training Details
|
216 |
+
|
217 |
+
### Training Dataset
|
218 |
+
|
219 |
+
#### klue/klue
|
220 |
+
|
221 |
+
* Dataset: [klue/klue](https://huggingface.co/datasets/klue/klue) at [349481e](https://huggingface.co/datasets/klue/klue/tree/349481ec73fff722f88e0453ca05c77a447d967c)
|
222 |
+
* Size: 11,668 training samples
|
223 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
224 |
+
* Approximate statistics based on the first 1000 samples:
|
225 |
+
| | sentence1 | sentence2 | label |
|
226 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
227 |
+
| type | string | string | float |
|
228 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 18.12 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 17.58 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 1.0</li></ul> |
|
229 |
+
* Samples:
|
230 |
+
| sentence1 | sentence2 | label |
|
231 |
+
|:-----------------------------------------------------------|:--------------------------------------------------------|:---------------------------------|
|
232 |
+
| <code>숙소 위치는 찾기 쉽고 일반적인 한국의 반지하 숙소입니다.</code> | <code>숙박시설의 위치는 쉽게 찾을 수 있고 한국의 대표적인 반지하 숙박시설입니다.</code> | <code>0.7428571428571428</code> |
|
233 |
+
| <code>위반행위 조사 등을 거부·방해·기피한 자는 500만원 이하 과태료 부과 대상이다.</code> | <code>시민들 스스로 자발적인 예방 노력을 한 것은 아산 뿐만이 아니었다.</code> | <code>0.0</code> |
|
234 |
+
| <code>회사가 보낸 메일은 이 지메일이 아니라 다른 지메일 계정으로 전달해줘.</code> | <code>사람들이 주로 네이버 메일을 쓰는 이유를 알려줘</code> | <code>0.06666666666666667</code> |
|
235 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
236 |
+
```json
|
237 |
+
{
|
238 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
239 |
+
}
|
240 |
+
```
|
241 |
+
|
242 |
+
### Evaluation Dataset
|
243 |
+
|
244 |
+
#### klue/klue
|
245 |
+
|
246 |
+
* Dataset: [klue/klue](https://huggingface.co/datasets/klue/klue) at [349481e](https://huggingface.co/datasets/klue/klue/tree/349481ec73fff722f88e0453ca05c77a447d967c)
|
247 |
+
* Size: 519 evaluation samples
|
248 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
249 |
+
* Approximate statistics based on the first 1000 samples:
|
250 |
+
| | sentence1 | sentence2 | label |
|
251 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
252 |
+
| type | string | string | float |
|
253 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 18.16 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 17.69 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
|
254 |
+
* Samples:
|
255 |
+
| sentence1 | sentence2 | label |
|
256 |
+
|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------|:---------------------------------|
|
257 |
+
| <code>무엇보다도 호스트분들이 너무 친절하셨습니다.</code> | <code>무엇보다도, 호스트들은 매우 친절했습니다.</code> | <code>0.9714285714285713</code> |
|
258 |
+
| <code>주요 관광지 모두 걸어서 이동가능합니다.</code> | <code>위치는 피렌체 중심가까지 걸어서 이동 가능합니다.</code> | <code>0.2857142857142858</code> |
|
259 |
+
| <code>학생들의 균형 있는 영어능력을 향상시킬 수 있는 학교 수업을 유도하기 위해 2018학년도 수능부터 도입된 영어 영역 절대평가는 올해도 유지한다.</code> | <code>영어 영역의 경우 학생들이 한글 해석본을 암기하는 문제를 해소하기 위해 2016학년도부터 적용했던 EBS 연계 방식을 올해도 유지한다.</code> | <code>0.25714285714285723</code> |
|
260 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
261 |
+
```json
|
262 |
+
{
|
263 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
264 |
+
}
|
265 |
+
```
|
266 |
+
|
267 |
+
### Training Hyperparameters
|
268 |
+
#### Non-Default Hyperparameters
|
269 |
+
|
270 |
+
- `eval_strategy`: steps
|
271 |
+
- `per_device_train_batch_size`: 64
|
272 |
+
- `per_device_eval_batch_size`: 64
|
273 |
+
- `num_train_epochs`: 30
|
274 |
+
- `warmup_ratio`: 0.1
|
275 |
+
- `fp16`: True
|
276 |
+
|
277 |
+
#### All Hyperparameters
|
278 |
+
<details><summary>Click to expand</summary>
|
279 |
+
|
280 |
+
- `overwrite_output_dir`: False
|
281 |
+
- `do_predict`: False
|
282 |
+
- `eval_strategy`: steps
|
283 |
+
- `prediction_loss_only`: True
|
284 |
+
- `per_device_train_batch_size`: 64
|
285 |
+
- `per_device_eval_batch_size`: 64
|
286 |
+
- `per_gpu_train_batch_size`: None
|
287 |
+
- `per_gpu_eval_batch_size`: None
|
288 |
+
- `gradient_accumulation_steps`: 1
|
289 |
+
- `eval_accumulation_steps`: None
|
290 |
+
- `learning_rate`: 5e-05
|
291 |
+
- `weight_decay`: 0.0
|
292 |
+
- `adam_beta1`: 0.9
|
293 |
+
- `adam_beta2`: 0.999
|
294 |
+
- `adam_epsilon`: 1e-08
|
295 |
+
- `max_grad_norm`: 1.0
|
296 |
+
- `num_train_epochs`: 30
|
297 |
+
- `max_steps`: -1
|
298 |
+
- `lr_scheduler_type`: linear
|
299 |
+
- `lr_scheduler_kwargs`: {}
|
300 |
+
- `warmup_ratio`: 0.1
|
301 |
+
- `warmup_steps`: 0
|
302 |
+
- `log_level`: passive
|
303 |
+
- `log_level_replica`: warning
|
304 |
+
- `log_on_each_node`: True
|
305 |
+
- `logging_nan_inf_filter`: True
|
306 |
+
- `save_safetensors`: True
|
307 |
+
- `save_on_each_node`: False
|
308 |
+
- `save_only_model`: False
|
309 |
+
- `restore_callback_states_from_checkpoint`: False
|
310 |
+
- `no_cuda`: False
|
311 |
+
- `use_cpu`: False
|
312 |
+
- `use_mps_device`: False
|
313 |
+
- `seed`: 42
|
314 |
+
- `data_seed`: None
|
315 |
+
- `jit_mode_eval`: False
|
316 |
+
- `use_ipex`: False
|
317 |
+
- `bf16`: False
|
318 |
+
- `fp16`: True
|
319 |
+
- `fp16_opt_level`: O1
|
320 |
+
- `half_precision_backend`: auto
|
321 |
+
- `bf16_full_eval`: False
|
322 |
+
- `fp16_full_eval`: False
|
323 |
+
- `tf32`: None
|
324 |
+
- `local_rank`: 0
|
325 |
+
- `ddp_backend`: None
|
326 |
+
- `tpu_num_cores`: None
|
327 |
+
- `tpu_metrics_debug`: False
|
328 |
+
- `debug`: []
|
329 |
+
- `dataloader_drop_last`: False
|
330 |
+
- `dataloader_num_workers`: 0
|
331 |
+
- `dataloader_prefetch_factor`: None
|
332 |
+
- `past_index`: -1
|
333 |
+
- `disable_tqdm`: False
|
334 |
+
- `remove_unused_columns`: True
|
335 |
+
- `label_names`: None
|
336 |
+
- `load_best_model_at_end`: False
|
337 |
+
- `ignore_data_skip`: False
|
338 |
+
- `fsdp`: []
|
339 |
+
- `fsdp_min_num_params`: 0
|
340 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
341 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
342 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
343 |
+
- `deepspeed`: None
|
344 |
+
- `label_smoothing_factor`: 0.0
|
345 |
+
- `optim`: adamw_torch
|
346 |
+
- `optim_args`: None
|
347 |
+
- `adafactor`: False
|
348 |
+
- `group_by_length`: False
|
349 |
+
- `length_column_name`: length
|
350 |
+
- `ddp_find_unused_parameters`: None
|
351 |
+
- `ddp_bucket_cap_mb`: None
|
352 |
+
- `ddp_broadcast_buffers`: False
|
353 |
+
- `dataloader_pin_memory`: True
|
354 |
+
- `dataloader_persistent_workers`: False
|
355 |
+
- `skip_memory_metrics`: True
|
356 |
+
- `use_legacy_prediction_loop`: False
|
357 |
+
- `push_to_hub`: False
|
358 |
+
- `resume_from_checkpoint`: None
|
359 |
+
- `hub_model_id`: None
|
360 |
+
- `hub_strategy`: every_save
|
361 |
+
- `hub_private_repo`: False
|
362 |
+
- `hub_always_push`: False
|
363 |
+
- `gradient_checkpointing`: False
|
364 |
+
- `gradient_checkpointing_kwargs`: None
|
365 |
+
- `include_inputs_for_metrics`: False
|
366 |
+
- `eval_do_concat_batches`: True
|
367 |
+
- `fp16_backend`: auto
|
368 |
+
- `push_to_hub_model_id`: None
|
369 |
+
- `push_to_hub_organization`: None
|
370 |
+
- `mp_parameters`:
|
371 |
+
- `auto_find_batch_size`: False
|
372 |
+
- `full_determinism`: False
|
373 |
+
- `torchdynamo`: None
|
374 |
+
- `ray_scope`: last
|
375 |
+
- `ddp_timeout`: 1800
|
376 |
+
- `torch_compile`: False
|
377 |
+
- `torch_compile_backend`: None
|
378 |
+
- `torch_compile_mode`: None
|
379 |
+
- `dispatch_batches`: None
|
380 |
+
- `split_batches`: None
|
381 |
+
- `include_tokens_per_second`: False
|
382 |
+
- `include_num_input_tokens_seen`: False
|
383 |
+
- `neftune_noise_alpha`: None
|
384 |
+
- `optim_target_modules`: None
|
385 |
+
- `batch_eval_metrics`: False
|
386 |
+
- `batch_sampler`: batch_sampler
|
387 |
+
- `multi_dataset_batch_sampler`: proportional
|
388 |
+
|
389 |
+
</details>
|
390 |
+
|
391 |
+
### Training Logs
|
392 |
+
| Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine |
|
393 |
+
|:------:|:----:|:-------------:|:------:|:-----------------------:|
|
394 |
+
| 0 | 0 | - | - | 0.7123 |
|
395 |
+
| 0.0109 | 1 | 0.0255 | - | - |
|
396 |
+
| 0.5435 | 50 | 0.0225 | 0.0336 | 0.7961 |
|
397 |
+
| 1.0870 | 100 | 0.0159 | 0.0288 | 0.8299 |
|
398 |
+
| 1.6304 | 150 | 0.012 | 0.0258 | 0.8499 |
|
399 |
+
| 2.1739 | 200 | 0.0098 | 0.0238 | 0.8651 |
|
400 |
+
| 2.7174 | 250 | 0.0069 | 0.0233 | 0.8700 |
|
401 |
+
| 3.2609 | 300 | 0.0056 | 0.0241 | 0.8682 |
|
402 |
+
| 3.8043 | 350 | 0.0043 | 0.0231 | 0.8715 |
|
403 |
+
| 4.3478 | 400 | 0.0043 | 0.0261 | 0.8680 |
|
404 |
+
| 4.8913 | 450 | 0.0039 | 0.0239 | 0.8743 |
|
405 |
+
| 5.4348 | 500 | 0.0037 | 0.0247 | 0.8726 |
|
406 |
+
| 5.9783 | 550 | 0.0034 | 0.0231 | 0.8762 |
|
407 |
+
| 6.5217 | 600 | 0.003 | 0.0238 | 0.8746 |
|
408 |
+
| 7.0652 | 650 | 0.003 | 0.0246 | 0.8712 |
|
409 |
+
| 7.6087 | 700 | 0.0028 | 0.0240 | 0.8765 |
|
410 |
+
|
411 |
+
|
412 |
+
### Framework Versions
|
413 |
+
- Python: 3.11.9
|
414 |
+
- Sentence Transformers: 3.0.1
|
415 |
+
- Transformers: 4.41.2
|
416 |
+
- PyTorch: 2.3.1
|
417 |
+
- Accelerate: 0.31.0
|
418 |
+
- Datasets: 2.19.2
|
419 |
+
- Tokenizers: 0.19.1
|
420 |
+
|
421 |
+
## Citation
|
422 |
+
|
423 |
+
### BibTeX
|
424 |
+
|
425 |
+
#### Sentence Transformers
|
426 |
+
```bibtex
|
427 |
+
@inproceedings{reimers-2019-sentence-bert,
|
428 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
429 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
430 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
431 |
+
month = "11",
|
432 |
+
year = "2019",
|
433 |
+
publisher = "Association for Computational Linguistics",
|
434 |
+
url = "https://arxiv.org/abs/1908.10084",
|
435 |
+
}
|
436 |
+
```
|
437 |
+
|
438 |
+
<!--
|
439 |
+
## Glossary
|
440 |
+
|
441 |
+
*Clearly define terms in order to be accessible across audiences.*
|
442 |
+
-->
|
443 |
+
|
444 |
+
<!--
|
445 |
+
## Model Card Authors
|
446 |
+
|
447 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
448 |
+
-->
|
449 |
+
|
450 |
+
<!--
|
451 |
+
## Model Card Contact
|
452 |
+
|
453 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
454 |
+
-->
|
added_tokens.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./models/sentence-transformers/training_sts_KR-Medium-extended-NLI_triple_PAR_pair_QA_pair-2024-07-31_03-00-51/checkpoint-700",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 3072,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.41.2",
|
22 |
+
"type_vocab_size": 2,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 40412
|
25 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.3.1"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a32dc2d7b1b5189bf26e97785f1704af70f1fe2c5bdef0478158964c422c2cf
|
3 |
+
size 468333416
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|