Upload folder using huggingface_hub
Browse files- LICENSE +21 -0
- README.md +24 -3
- main.py +113 -0
- model.py +437 -0
- requirements.txt +4 -0
- smule-renaissance-small.pt +3 -0
- spectral_ops.py +33 -0
LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2025 smulelabs
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
README.md
CHANGED
|
@@ -1,3 +1,24 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Smule Renaissance Small
|
| 2 |
+
|
| 3 |
+
A 10.4M paramater generative audio model for restoring degraded vocals in any situation that runs 10.5x faster than real-time on iPhone 12's CPU.
|
| 4 |
+
|
| 5 |
+
Technical Report: [](https://arxiv.org/abs/2510.21659)
|
| 6 |
+
|
| 7 |
+
HuggingFace Model: [](https://huggingface.co/smulelabs/Smule-Renaissance-Small)
|
| 8 |
+
|
| 9 |
+
Extreme Degradation Bench: [](https://huggingface.co/datasets/smulelabs/ExtremeDegradationBench)
|
| 10 |
+
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
## Getting Started
|
| 14 |
+
### Setting up environment
|
| 15 |
+
```bash
|
| 16 |
+
# Create a virtual environment
|
| 17 |
+
uv venv cleanup --python=3.10
|
| 18 |
+
source cleanup/bin/activate
|
| 19 |
+
uv pip install -r requirements.txt
|
| 20 |
+
```
|
| 21 |
+
### Running the model
|
| 22 |
+
```bash
|
| 23 |
+
python main.py {path-to-input} -o {path-to-output} -c {path-to-checkpoint}
|
| 24 |
+
```
|
main.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import torch
|
| 3 |
+
import torchaudio
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from spectral_ops import STFT, iSTFT
|
| 6 |
+
from model import Renaissance
|
| 7 |
+
|
| 8 |
+
def load_and_preprocess_audio(input_path, device, dtype):
|
| 9 |
+
waveform, sr = torchaudio.load(input_path)
|
| 10 |
+
|
| 11 |
+
if waveform.shape[0] > 1:
|
| 12 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
| 13 |
+
print(f"Converted to mono from {waveform.shape[0]} channels")
|
| 14 |
+
|
| 15 |
+
if sr != 48000:
|
| 16 |
+
print(f"Resampling from {sr} Hz to 48000 Hz")
|
| 17 |
+
resampler = torchaudio.transforms.Resample(sr, 48000)
|
| 18 |
+
waveform = resampler(waveform)
|
| 19 |
+
|
| 20 |
+
waveform = torchaudio.functional.highpass_biquad(
|
| 21 |
+
waveform, 48000, cutoff_freq=60.0
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
waveform = waveform.to(device).to(dtype)
|
| 25 |
+
|
| 26 |
+
return waveform
|
| 27 |
+
|
| 28 |
+
def normalize_audio(audio):
|
| 29 |
+
normalization_factor = torch.max(torch.abs(audio))
|
| 30 |
+
if normalization_factor > 0:
|
| 31 |
+
normalized_audio = audio / normalization_factor
|
| 32 |
+
else:
|
| 33 |
+
normalized_audio = audio
|
| 34 |
+
return normalized_audio, normalization_factor
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def process_audio(model, stft, istft, input_wav, device):
|
| 38 |
+
input_wav_norm, norm_factor = normalize_audio(input_wav)
|
| 39 |
+
|
| 40 |
+
with torch.no_grad():
|
| 41 |
+
input_stft = stft(input_wav_norm)
|
| 42 |
+
|
| 43 |
+
with torch.cuda.amp.autocast(enabled=torch.cuda.is_available()):
|
| 44 |
+
enhanced_stft = model(input_stft)
|
| 45 |
+
|
| 46 |
+
enhanced_wav = istft(enhanced_stft)
|
| 47 |
+
|
| 48 |
+
if norm_factor > 0:
|
| 49 |
+
enhanced_wav = enhanced_wav * norm_factor
|
| 50 |
+
|
| 51 |
+
return enhanced_wav
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def main():
|
| 55 |
+
parser = argparse.ArgumentParser(
|
| 56 |
+
description="Smule Renaissance Vocal Restoration"
|
| 57 |
+
)
|
| 58 |
+
parser.add_argument(
|
| 59 |
+
"input",
|
| 60 |
+
type=str,
|
| 61 |
+
help="Input audio file path"
|
| 62 |
+
)
|
| 63 |
+
parser.add_argument(
|
| 64 |
+
"-o", "--output",
|
| 65 |
+
type=str,
|
| 66 |
+
default=None,
|
| 67 |
+
help="Output audio file path (default: input_enhanced.wav)"
|
| 68 |
+
)
|
| 69 |
+
parser.add_argument(
|
| 70 |
+
"-c", "--checkpoint",
|
| 71 |
+
type=str,
|
| 72 |
+
required=True,
|
| 73 |
+
help="Model checkpoint path"
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
args = parser.parse_args()
|
| 77 |
+
|
| 78 |
+
if args.output is None:
|
| 79 |
+
input_path = Path(args.input)
|
| 80 |
+
args.output = str(input_path.parent / f"{input_path.stem}_enhanced.wav")
|
| 81 |
+
|
| 82 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 83 |
+
if torch.cuda.is_available():
|
| 84 |
+
print("Using device: CUDA with FP16 precision")
|
| 85 |
+
dtype = torch.float16
|
| 86 |
+
else:
|
| 87 |
+
print("Using device: CPU with FP32 precision")
|
| 88 |
+
dtype = torch.float32
|
| 89 |
+
|
| 90 |
+
print(f"Loading model from {args.checkpoint}...")
|
| 91 |
+
model = Renaissance().to(device).to(dtype)
|
| 92 |
+
model.load_state_dict(torch.load(args.checkpoint, map_location=device))
|
| 93 |
+
model.eval()
|
| 94 |
+
|
| 95 |
+
stft = STFT(n_fft=4096, hop_length=2048, win_length=4096)
|
| 96 |
+
istft = iSTFT(n_fft=4096, hop_length=2048, win_length=4096)
|
| 97 |
+
|
| 98 |
+
print(f"Loading audio from {args.input}...")
|
| 99 |
+
input_wav = load_and_preprocess_audio(args.input, device, dtype)
|
| 100 |
+
print(f"Audio duration: {input_wav.shape[1] / 48000:.2f} seconds")
|
| 101 |
+
|
| 102 |
+
print("Processing audio...")
|
| 103 |
+
enhanced_wav = process_audio(model, stft, istft, input_wav, device)
|
| 104 |
+
|
| 105 |
+
print(f"Saving enhanced audio to {args.output}...")
|
| 106 |
+
enhanced_wav_cpu = enhanced_wav.cpu().to(torch.float32)
|
| 107 |
+
torchaudio.save(args.output, enhanced_wav_cpu, 48000)
|
| 108 |
+
|
| 109 |
+
print("Done!")
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
if __name__ == "__main__":
|
| 113 |
+
main()
|
model.py
ADDED
|
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import numpy as np
|
| 5 |
+
from typing import Tuple, List, Optional
|
| 6 |
+
|
| 7 |
+
class RMSNorm(nn.Module):
|
| 8 |
+
def __init__(self, dimension: int, eps: float = 1e-5):
|
| 9 |
+
super().__init__()
|
| 10 |
+
self.weight = nn.Parameter(torch.ones(dimension))
|
| 11 |
+
self.eps = eps
|
| 12 |
+
|
| 13 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
| 14 |
+
input_float = input.half()
|
| 15 |
+
variance = input_float.pow(2).mean(dim=1, keepdim=True)
|
| 16 |
+
input_norm = input_float * torch.rsqrt(variance + self.eps)
|
| 17 |
+
return (input_norm * self.weight.unsqueeze(0).unsqueeze(-1)).type_as(input)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class RotaryEmbedding(nn.Module):
|
| 21 |
+
def __init__(self, dim: int, max_position_embeddings: int = 2048, base: int = 10000):
|
| 22 |
+
super().__init__()
|
| 23 |
+
self.dim = dim
|
| 24 |
+
self.max_position_embeddings = max_position_embeddings
|
| 25 |
+
self.base = base
|
| 26 |
+
|
| 27 |
+
inv_freq = 1. / (self.base ** (torch.arange(0, self.dim, 2).half() / self.dim))
|
| 28 |
+
self.register_buffer('inv_freq', inv_freq)
|
| 29 |
+
|
| 30 |
+
self._set_cos_sin_cache(
|
| 31 |
+
seq_len=max_position_embeddings,
|
| 32 |
+
device=self.inv_freq.device,
|
| 33 |
+
dtype=torch.get_default_dtype()
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype):
|
| 37 |
+
self.max_seq_len_cached = seq_len
|
| 38 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 39 |
+
|
| 40 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
| 41 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 42 |
+
|
| 43 |
+
self.register_buffer('cos_cached', emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
| 44 |
+
self.register_buffer('sin_cached', emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
| 45 |
+
|
| 46 |
+
def forward(self, x: torch.Tensor, seq_len: int) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 47 |
+
if seq_len > self.max_seq_len_cached:
|
| 48 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
| 49 |
+
|
| 50 |
+
return (
|
| 51 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
| 52 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def rotate_half(x: torch.Tensor) -> torch.Tensor:
|
| 57 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 58 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 59 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class RoformerLayer(nn.Module):
|
| 63 |
+
def __init__(
|
| 64 |
+
self,
|
| 65 |
+
feature_dim: int,
|
| 66 |
+
num_heads: int = 8,
|
| 67 |
+
max_seq_len: int = 10000,
|
| 68 |
+
dropout: float = 0.0,
|
| 69 |
+
mlp_ratio: float = 4.0,
|
| 70 |
+
rope_base: int = 10000
|
| 71 |
+
):
|
| 72 |
+
super().__init__()
|
| 73 |
+
assert feature_dim % num_heads == 0, "feature_dim must be divisible by num_heads"
|
| 74 |
+
|
| 75 |
+
self.feature_dim = feature_dim
|
| 76 |
+
self.num_heads = num_heads
|
| 77 |
+
self.head_dim = feature_dim // num_heads
|
| 78 |
+
|
| 79 |
+
self.rotary_emb = RotaryEmbedding(self.head_dim, max_position_embeddings=max_seq_len, base=rope_base)
|
| 80 |
+
self.dropout = dropout
|
| 81 |
+
|
| 82 |
+
self.input_norm = RMSNorm(feature_dim)
|
| 83 |
+
self.qkv_proj = nn.Linear(feature_dim, feature_dim * 3, bias=False)
|
| 84 |
+
self.output_proj = nn.Linear(feature_dim, feature_dim, bias=False)
|
| 85 |
+
|
| 86 |
+
mlp_hidden_dim = int(feature_dim * mlp_ratio)
|
| 87 |
+
self.mlp_norm = RMSNorm(feature_dim)
|
| 88 |
+
self.mlp_up = nn.Linear(feature_dim, mlp_hidden_dim * 2, bias=False)
|
| 89 |
+
self.mlp_down = nn.Linear(mlp_hidden_dim, feature_dim, bias=False)
|
| 90 |
+
|
| 91 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 92 |
+
B, N, T = x.shape
|
| 93 |
+
x_residual = x
|
| 94 |
+
x_norm = self.input_norm(x).transpose(1, 2)
|
| 95 |
+
|
| 96 |
+
qkv = self.qkv_proj(x_norm)
|
| 97 |
+
qkv = qkv.view(B, T, 3, self.num_heads, self.head_dim)
|
| 98 |
+
qkv = qkv.permute(2, 0, 3, 1, 4)
|
| 99 |
+
Q, K, V = qkv[0], qkv[1], qkv[2]
|
| 100 |
+
|
| 101 |
+
cos, sin = self.rotary_emb(Q, seq_len=T)
|
| 102 |
+
Q = (Q * cos) + (rotate_half(Q) * sin)
|
| 103 |
+
K = (K * cos) + (rotate_half(K) * sin)
|
| 104 |
+
|
| 105 |
+
attn_output = F.scaled_dot_product_attention(
|
| 106 |
+
Q, K, V, dropout_p=self.dropout if self.training else 0.0, is_causal=False
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
attn_output = attn_output.permute(0, 2, 1, 3).contiguous().view(B, T, N)
|
| 110 |
+
attn_output = self.output_proj(attn_output).transpose(1, 2)
|
| 111 |
+
|
| 112 |
+
x = x_residual + attn_output
|
| 113 |
+
|
| 114 |
+
x_residual = x
|
| 115 |
+
x_norm = self.mlp_norm(x).transpose(1, 2)
|
| 116 |
+
|
| 117 |
+
mlp_out = self.mlp_up(x_norm)
|
| 118 |
+
gate, values = mlp_out.chunk(2, dim=-1)
|
| 119 |
+
mlp_out = F.silu(gate) * values
|
| 120 |
+
mlp_out = self.mlp_down(mlp_out)
|
| 121 |
+
|
| 122 |
+
output = x_residual + mlp_out.transpose(1, 2)
|
| 123 |
+
|
| 124 |
+
return output
|
| 125 |
+
|
| 126 |
+
class Roformer(nn.Module):
|
| 127 |
+
def __init__(self, input_size, hidden_size, num_head=8, theta=10000, window=10000,
|
| 128 |
+
input_drop=0., attention_drop=0., causal=True):
|
| 129 |
+
super().__init__()
|
| 130 |
+
|
| 131 |
+
self.input_size = input_size
|
| 132 |
+
self.hidden_size = hidden_size // num_head
|
| 133 |
+
self.num_head = num_head
|
| 134 |
+
self.theta = theta
|
| 135 |
+
self.window = window
|
| 136 |
+
cos_freq, sin_freq = self._calc_rotary_emb()
|
| 137 |
+
self.register_buffer("cos_freq", cos_freq)
|
| 138 |
+
self.register_buffer("sin_freq", sin_freq)
|
| 139 |
+
|
| 140 |
+
self.attention_drop = attention_drop
|
| 141 |
+
self.causal = causal
|
| 142 |
+
self.eps = 1e-5
|
| 143 |
+
|
| 144 |
+
self.input_norm = RMSNorm(self.input_size)
|
| 145 |
+
self.input_drop = nn.Dropout(p=input_drop)
|
| 146 |
+
self.weight = nn.Conv1d(self.input_size, self.hidden_size*self.num_head*3, 1, bias=False)
|
| 147 |
+
self.output = nn.Conv1d(self.hidden_size*self.num_head, self.input_size, 1, bias=False)
|
| 148 |
+
|
| 149 |
+
self.MLP = nn.Sequential(RMSNorm(self.input_size),
|
| 150 |
+
nn.Conv1d(self.input_size, self.input_size*8, 1, bias=False),
|
| 151 |
+
nn.SiLU()
|
| 152 |
+
)
|
| 153 |
+
self.MLP_output = nn.Conv1d(self.input_size*4, self.input_size, 1, bias=False)
|
| 154 |
+
|
| 155 |
+
def _calc_rotary_emb(self):
|
| 156 |
+
freq = 1. / (self.theta ** (torch.arange(0, self.hidden_size, 2)[:(self.hidden_size // 2)] / self.hidden_size))
|
| 157 |
+
freq = freq.reshape(1, -1)
|
| 158 |
+
pos = torch.arange(0, self.window).reshape(-1, 1)
|
| 159 |
+
cos_freq = torch.cos(pos*freq)
|
| 160 |
+
sin_freq = torch.sin(pos*freq)
|
| 161 |
+
cos_freq = torch.stack([cos_freq]*2, -1).reshape(self.window, self.hidden_size)
|
| 162 |
+
sin_freq = torch.stack([sin_freq]*2, -1).reshape(self.window, self.hidden_size)
|
| 163 |
+
|
| 164 |
+
return cos_freq, sin_freq
|
| 165 |
+
|
| 166 |
+
def _add_rotary_emb(self, feature, pos):
|
| 167 |
+
N = feature.shape[-1]
|
| 168 |
+
|
| 169 |
+
feature_reshape = feature.reshape(-1, N)
|
| 170 |
+
pos = min(pos, self.window-1)
|
| 171 |
+
cos_freq = self.cos_freq[pos]
|
| 172 |
+
sin_freq = self.sin_freq[pos]
|
| 173 |
+
reverse_sign = torch.from_numpy(np.asarray([-1, 1])).to(feature.device).type(feature.dtype)
|
| 174 |
+
feature_reshape_neg = (torch.flip(feature_reshape.reshape(-1, N//2, 2), [-1]) * reverse_sign.reshape(1, 1, 2)).reshape(-1, N)
|
| 175 |
+
feature_rope = feature_reshape * cos_freq.unsqueeze(0) + feature_reshape_neg * sin_freq.unsqueeze(0)
|
| 176 |
+
|
| 177 |
+
return feature_rope.reshape(feature.shape)
|
| 178 |
+
|
| 179 |
+
def _add_rotary_sequence(self, feature):
|
| 180 |
+
T, N = feature.shape[-2:]
|
| 181 |
+
feature_reshape = feature.reshape(-1, T, N)
|
| 182 |
+
|
| 183 |
+
cos_freq = self.cos_freq[:T]
|
| 184 |
+
sin_freq = self.sin_freq[:T]
|
| 185 |
+
reverse_sign = torch.from_numpy(np.asarray([-1, 1])).to(feature.device).type(feature.dtype)
|
| 186 |
+
feature_reshape_neg = (torch.flip(feature_reshape.reshape(-1, N//2, 2), [-1]) * reverse_sign.reshape(1, 1, 2)).reshape(-1, T, N)
|
| 187 |
+
feature_rope = feature_reshape * cos_freq.unsqueeze(0) + feature_reshape_neg * sin_freq.unsqueeze(0)
|
| 188 |
+
|
| 189 |
+
return feature_rope.reshape(feature.shape)
|
| 190 |
+
|
| 191 |
+
def forward(self, input):
|
| 192 |
+
B, _, T = input.shape
|
| 193 |
+
|
| 194 |
+
weight = self.weight(self.input_drop(self.input_norm(input))).reshape(B, self.num_head, self.hidden_size*3, T).transpose(-2,-1)
|
| 195 |
+
Q, K, V = torch.split(weight, self.hidden_size, dim=-1)
|
| 196 |
+
Q_rot = self._add_rotary_sequence(Q)
|
| 197 |
+
K_rot = self._add_rotary_sequence(K)
|
| 198 |
+
|
| 199 |
+
attention_output = F.scaled_dot_product_attention(Q_rot.contiguous(), K_rot.contiguous(), V.contiguous(), dropout_p=self.attention_drop, is_causal=self.causal) # B, num_head, T, N
|
| 200 |
+
attention_output = attention_output.transpose(-2,-1).reshape(B, -1, T)
|
| 201 |
+
output = self.output(attention_output) + input
|
| 202 |
+
|
| 203 |
+
gate, z = self.MLP(output).chunk(2, dim=1)
|
| 204 |
+
output = output + self.MLP_output(F.silu(gate) * z)
|
| 205 |
+
|
| 206 |
+
return output
|
| 207 |
+
|
| 208 |
+
class ConvBlock(nn.Module):
|
| 209 |
+
def __init__(self, channels: int, kernel_size: int, dilation: int, expansion: int = 4):
|
| 210 |
+
super().__init__()
|
| 211 |
+
padding = (kernel_size - 1) * dilation // 2
|
| 212 |
+
|
| 213 |
+
self.dwconv = nn.Conv1d(
|
| 214 |
+
channels, channels, kernel_size, padding=padding, dilation=dilation, groups=channels
|
| 215 |
+
)
|
| 216 |
+
self.norm = RMSNorm(channels)
|
| 217 |
+
self.pwconv1 = nn.Conv1d(channels, channels * expansion, 1)
|
| 218 |
+
self.act = nn.GLU(dim=1)
|
| 219 |
+
self.pwconv2 = nn.Conv1d(channels * expansion // 2, channels, 1)
|
| 220 |
+
|
| 221 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 222 |
+
x = self.dwconv(x)
|
| 223 |
+
x = self.norm(x)
|
| 224 |
+
x = self.pwconv1(x)
|
| 225 |
+
x = self.act(x)
|
| 226 |
+
x = self.pwconv2(x)
|
| 227 |
+
return x
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
class ICB(nn.Module):
|
| 231 |
+
def __init__(self, channels: int, kernel_size: int = 7, dilation: int = 1, layer_scale_init_value: float = 1e-6):
|
| 232 |
+
super().__init__()
|
| 233 |
+
self.block1 = ConvBlock(channels, kernel_size, 1, )
|
| 234 |
+
self.block2 = ConvBlock(channels, kernel_size, dilation)
|
| 235 |
+
self.block3 = ConvBlock(channels, kernel_size, 1)
|
| 236 |
+
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((channels)), requires_grad=True)
|
| 237 |
+
|
| 238 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 239 |
+
residual = x
|
| 240 |
+
x = self.block1(x)
|
| 241 |
+
x = self.block2(x)
|
| 242 |
+
x = self.block3(x)
|
| 243 |
+
return x * self.gamma.unsqueeze(0).unsqueeze(-1) + residual
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
class BSNet(nn.Module):
|
| 247 |
+
def __init__(
|
| 248 |
+
self,
|
| 249 |
+
feature_dim: int,
|
| 250 |
+
kernel_size: int,
|
| 251 |
+
dilation_rate: int,
|
| 252 |
+
num_heads: int,
|
| 253 |
+
max_bands: int = 512,
|
| 254 |
+
band_rope_base: int = 10000,
|
| 255 |
+
layer_scale_init_value: float = 1e-6
|
| 256 |
+
):
|
| 257 |
+
super().__init__()
|
| 258 |
+
self.band_net = Roformer(feature_dim, feature_dim, num_head=num_heads, window=max_bands, causal=False)
|
| 259 |
+
|
| 260 |
+
self.seq_net = ICB(
|
| 261 |
+
feature_dim,
|
| 262 |
+
kernel_size=kernel_size,
|
| 263 |
+
dilation=dilation_rate,
|
| 264 |
+
layer_scale_init_value=layer_scale_init_value
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
| 268 |
+
B, nband, N, T = input.shape
|
| 269 |
+
|
| 270 |
+
band_input = input.permute(0, 3, 2, 1).reshape(B * T, N, nband)
|
| 271 |
+
band_output = self.band_net(band_input)
|
| 272 |
+
band_output = band_output.view(B, T, N, nband).permute(0, 3, 2, 1)
|
| 273 |
+
|
| 274 |
+
seq_input = band_output.reshape(B * nband, N, T)
|
| 275 |
+
seq_output = self.seq_net(seq_input)
|
| 276 |
+
output = seq_output.view(B, nband, N, T)
|
| 277 |
+
|
| 278 |
+
return output
|
| 279 |
+
|
| 280 |
+
class Renaissance(nn.Module):
|
| 281 |
+
def __init__(
|
| 282 |
+
self,
|
| 283 |
+
n_freqs: int = 2049,
|
| 284 |
+
feature_dim: int = 128,
|
| 285 |
+
layer: int = 9,
|
| 286 |
+
sample_rate: int = 48000,
|
| 287 |
+
dilation_start_layer: int = 3,
|
| 288 |
+
n_bands: int = 80,
|
| 289 |
+
num_heads: int = 16,
|
| 290 |
+
max_seq_len: int = 10000,
|
| 291 |
+
band_rope_base: int = 10000,
|
| 292 |
+
temporal_rope_base: int = 10000
|
| 293 |
+
):
|
| 294 |
+
super().__init__()
|
| 295 |
+
self.enc_dim = n_freqs
|
| 296 |
+
self.feature_dim = feature_dim
|
| 297 |
+
self.eps = 1e-7
|
| 298 |
+
self.dilation_start_layer = dilation_start_layer
|
| 299 |
+
self.n_bands = n_bands
|
| 300 |
+
self.sr = sample_rate
|
| 301 |
+
self.max_seq_len = max_seq_len
|
| 302 |
+
self.band_rope_base = band_rope_base
|
| 303 |
+
self.temporal_rope_base = temporal_rope_base
|
| 304 |
+
|
| 305 |
+
self.band_width = self._generate_mel_bandwidths()
|
| 306 |
+
self.nband = len(self.band_width)
|
| 307 |
+
assert self.enc_dim == sum(self.band_width), "Mel band splitting failed to cover all frequencies."
|
| 308 |
+
|
| 309 |
+
self._build_feature_extractor()
|
| 310 |
+
self._build_main_network(layer, num_heads)
|
| 311 |
+
self._build_output_synthesis()
|
| 312 |
+
|
| 313 |
+
self.apply(self._init_weights)
|
| 314 |
+
|
| 315 |
+
def _init_weights(self, module):
|
| 316 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
| 317 |
+
nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
|
| 318 |
+
if module.bias is not None:
|
| 319 |
+
nn.init.zeros_(module.bias)
|
| 320 |
+
|
| 321 |
+
def _generate_mel_bandwidths(self) -> List[int]:
|
| 322 |
+
def hz_to_mel(hz): return 2595 * np.log10(1 + hz / 700.)
|
| 323 |
+
def mel_to_hz(mel): return 700 * (10**(mel / 2595) - 1)
|
| 324 |
+
|
| 325 |
+
min_freq, max_freq = 0.1, self.sr / 2
|
| 326 |
+
min_mel, max_mel = hz_to_mel(min_freq), hz_to_mel(max_freq)
|
| 327 |
+
|
| 328 |
+
mel_points = np.linspace(min_mel, max_mel, self.n_bands + 1)
|
| 329 |
+
hz_points = mel_to_hz(mel_points)
|
| 330 |
+
|
| 331 |
+
bin_width = self.sr / 2 / self.enc_dim
|
| 332 |
+
bw = np.round(np.diff(hz_points) / bin_width).astype(int)
|
| 333 |
+
|
| 334 |
+
bw = np.maximum(1, bw)
|
| 335 |
+
|
| 336 |
+
remainder = self.enc_dim - np.sum(bw)
|
| 337 |
+
if remainder != 0:
|
| 338 |
+
sorted_indices = np.argsort(bw)
|
| 339 |
+
op = 1 if remainder > 0 else -1
|
| 340 |
+
indices_to_adjust = sorted_indices if op == 1 else sorted_indices[::-1]
|
| 341 |
+
|
| 342 |
+
for i in range(abs(remainder)):
|
| 343 |
+
idx = indices_to_adjust[i % len(indices_to_adjust)]
|
| 344 |
+
if bw[idx] + op > 0:
|
| 345 |
+
bw[idx] += op
|
| 346 |
+
|
| 347 |
+
if np.sum(bw) != self.enc_dim:
|
| 348 |
+
bw[-1] += self.enc_dim - np.sum(bw)
|
| 349 |
+
|
| 350 |
+
return bw.tolist()
|
| 351 |
+
|
| 352 |
+
def _build_feature_extractor(self):
|
| 353 |
+
self.feature_extractor_layers = nn.ModuleList([
|
| 354 |
+
nn.Sequential(RMSNorm(bw * 2 + 1), nn.Conv1d(bw * 2 + 1, self.feature_dim, 1))
|
| 355 |
+
for bw in self.band_width
|
| 356 |
+
])
|
| 357 |
+
|
| 358 |
+
def _build_main_network(self, num_layers, num_heads):
|
| 359 |
+
self.net = nn.ModuleList()
|
| 360 |
+
max_bands = max(512, self.nband * 2)
|
| 361 |
+
|
| 362 |
+
layer_scale_init = 1e-6
|
| 363 |
+
|
| 364 |
+
for i in range(num_layers):
|
| 365 |
+
dilation = min(2 ** max(0, i - self.dilation_start_layer + 1), 4)
|
| 366 |
+
self.net.append(BSNet(
|
| 367 |
+
self.feature_dim,
|
| 368 |
+
kernel_size=7,
|
| 369 |
+
dilation_rate=dilation,
|
| 370 |
+
num_heads=num_heads,
|
| 371 |
+
max_bands=max_bands,
|
| 372 |
+
band_rope_base=self.band_rope_base,
|
| 373 |
+
layer_scale_init_value=layer_scale_init
|
| 374 |
+
))
|
| 375 |
+
|
| 376 |
+
def _build_output_synthesis(self):
|
| 377 |
+
self.output_layers = nn.ModuleList([
|
| 378 |
+
nn.Sequential(
|
| 379 |
+
RMSNorm(self.feature_dim),
|
| 380 |
+
nn.Conv1d(self.feature_dim, self.feature_dim * 2, 1),
|
| 381 |
+
nn.SiLU(),
|
| 382 |
+
nn.Conv1d(self.feature_dim * 2, bw * 4, kernel_size=1),
|
| 383 |
+
nn.GLU(dim=1),
|
| 384 |
+
) for bw in self.band_width
|
| 385 |
+
])
|
| 386 |
+
|
| 387 |
+
def spec_band_split(self, spec: torch.Tensor) -> Tuple[List[torch.Tensor], torch.Tensor]:
|
| 388 |
+
subband_spec_ri = []
|
| 389 |
+
subband_power = []
|
| 390 |
+
band_idx = 0
|
| 391 |
+
for width in self.band_width:
|
| 392 |
+
this_spec_ri = spec[:, band_idx : band_idx + width, :, :]
|
| 393 |
+
subband_spec_ri.append(this_spec_ri)
|
| 394 |
+
|
| 395 |
+
power = (this_spec_ri.pow(2).sum(dim=-1)).sum(dim=1, keepdim=True).add(self.eps).sqrt()
|
| 396 |
+
subband_power.append(power)
|
| 397 |
+
band_idx += width
|
| 398 |
+
|
| 399 |
+
subband_power = torch.cat(subband_power, 1)
|
| 400 |
+
return subband_spec_ri, subband_power
|
| 401 |
+
|
| 402 |
+
def feature_extraction(self, input_spec: torch.Tensor) -> torch.Tensor:
|
| 403 |
+
subband_spec_ri, subband_power = self.spec_band_split(input_spec)
|
| 404 |
+
features = []
|
| 405 |
+
for i in range(self.nband):
|
| 406 |
+
power_for_norm = subband_power[:, i:i+1, :].unsqueeze(1)
|
| 407 |
+
norm_spec_ri = subband_spec_ri[i] / (power_for_norm.transpose(2,3) + self.eps)
|
| 408 |
+
B, F_band, T, _ = norm_spec_ri.shape
|
| 409 |
+
norm_spec_flat = norm_spec_ri.permute(0, 3, 1, 2).reshape(B, F_band*2, T)
|
| 410 |
+
|
| 411 |
+
log_power_feature = torch.log(power_for_norm.squeeze(1) + self.eps)
|
| 412 |
+
feature_input = torch.cat([norm_spec_flat, log_power_feature], dim=1)
|
| 413 |
+
|
| 414 |
+
features.append(self.feature_extractor_layers[i](feature_input))
|
| 415 |
+
|
| 416 |
+
return torch.stack(features, 1)
|
| 417 |
+
|
| 418 |
+
def forward(self, input_spec: torch.Tensor) -> torch.Tensor:
|
| 419 |
+
B, F, T, _ = input_spec.shape
|
| 420 |
+
|
| 421 |
+
features = self.feature_extraction(input_spec)
|
| 422 |
+
|
| 423 |
+
residual_features = features
|
| 424 |
+
processed = features
|
| 425 |
+
for layer in self.net:
|
| 426 |
+
processed = layer(processed)
|
| 427 |
+
processed = processed + residual_features
|
| 428 |
+
|
| 429 |
+
est_spec_bands = []
|
| 430 |
+
for i in range(self.nband):
|
| 431 |
+
band_output = self.output_layers[i](processed[:, i])
|
| 432 |
+
bw = self.band_width[i]
|
| 433 |
+
est_spec_band = band_output.view(B, bw, 2, T).permute(0, 1, 3, 2)
|
| 434 |
+
est_spec_bands.append(est_spec_band)
|
| 435 |
+
est_spec_full = torch.cat(est_spec_bands, dim=1)
|
| 436 |
+
|
| 437 |
+
return est_spec_full
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==2.7.1
|
| 2 |
+
torchaudio
|
| 3 |
+
argparse
|
| 4 |
+
numpy==2.2.6
|
smule-renaissance-small.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dd73b487ed058fdea66a25915f9f5a50b3d2dd97c03480f268a1d50a00fe2b06
|
| 3 |
+
size 42064415
|
spectral_ops.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
class STFT:
|
| 4 |
+
def __init__(self, n_fft, hop_length, win_length):
|
| 5 |
+
self.n_fft = n_fft
|
| 6 |
+
self.hop_length = hop_length
|
| 7 |
+
self.win_length = win_length
|
| 8 |
+
self.window = torch.hann_window(win_length)
|
| 9 |
+
|
| 10 |
+
def __call__(self, y):
|
| 11 |
+
self.window = self.window.to(y.device)
|
| 12 |
+
stft_matrix = torch.stft(
|
| 13 |
+
y,
|
| 14 |
+
n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length,
|
| 15 |
+
window=self.window, return_complex=False, center=True, pad_mode='reflect'
|
| 16 |
+
)
|
| 17 |
+
return stft_matrix
|
| 18 |
+
|
| 19 |
+
class iSTFT:
|
| 20 |
+
def __init__(self, n_fft, hop_length, win_length):
|
| 21 |
+
self.n_fft = n_fft
|
| 22 |
+
self.hop_length = hop_length
|
| 23 |
+
self.win_length = win_length
|
| 24 |
+
self.window = torch.hann_window(win_length)
|
| 25 |
+
|
| 26 |
+
def __call__(self, X):
|
| 27 |
+
self.window = self.window.to(X.device)
|
| 28 |
+
X = torch.view_as_complex(X.contiguous())
|
| 29 |
+
return torch.istft(
|
| 30 |
+
X,
|
| 31 |
+
n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length,
|
| 32 |
+
window=self.window, center=True
|
| 33 |
+
)
|