|
from models import Generator |
|
from scipy.io.wavfile import write |
|
from meldataset import MAX_WAV_VALUE |
|
import numpy as np |
|
import os |
|
import json |
|
from env import AttrDict |
|
import torch |
|
import time |
|
from espnet2.bin.tts_inference import Text2Speech |
|
|
|
for dev in ("cpu", "cuda"): |
|
print(f"loading model in {dev}") |
|
device=torch.device(dev) |
|
|
|
config_file = os.path.join('/speech/arun/tts/hifigan/cp_hifigan/config.json') |
|
with open(config_file) as f: |
|
data = f.read() |
|
json_config = json.loads(data) |
|
h = AttrDict(json_config) |
|
torch.manual_seed(h.seed) |
|
generator = Generator(h).to(device) |
|
state_dict_g = torch.load("/speech/arun/tts/hifigan/cp_hifigan/g_00120000", device) |
|
generator.load_state_dict(state_dict_g['generator']) |
|
generator.eval() |
|
generator.remove_weight_norm() |
|
text2speech = Text2Speech(train_config="/speech/arun/tts/hifigan/config.yaml",model_file="/var/www/html/IITM_TTS/E2E_TTS_FS2/fastspeech2/models/Hindi_male/train.loss.ave.pth",device=dev) |
|
for i in range(3): |
|
print("Run ",i) |
|
with torch.no_grad(): |
|
st = time.time() |
|
text = "पाइथन में प्रोग्रामिंग, डेटा स्ट्रक्चर्स और एल्गोरिदम पर पाठ्यक्रम पर पहले व्याख्यान में, आपका स्वागत है।" |
|
tmp_dir="tmp" |
|
lang = "Hindi" |
|
timestamp = "1" |
|
preprocess_start = time.time() |
|
|
|
os.makedirs(tmp_dir, exist_ok = True) |
|
textfile_inp = os.path.abspath(f"{tmp_dir}/input.txt") |
|
textfile = os.path.abspath(f"{tmp_dir}/input_preprocessed.txt") |
|
|
|
with open(textfile_inp, "w") as f: |
|
f.write(text) |
|
|
|
command = f"/var/www/html/IITM_TTS/E2E_TTS_FS2/text_proc/text_proc.sh {textfile_inp} {textfile} {lang} {timestamp} {tmp_dir}" |
|
os.system(command) |
|
|
|
|
|
|
|
|
|
|
|
preprocessed_text = [] |
|
with open(textfile, "r") as f: |
|
for line in f.readlines(): |
|
preprocessed_text.append(line.split(" ", 1)[1].strip()) |
|
preprocess_end = time.time() |
|
t2s_start = preprocess_end |
|
out = text2speech(" ".join(preprocessed_text)) |
|
t2s_end = time.time() |
|
vocoder_start = t2s_end |
|
x = out["feat_gen_denorm"].T.unsqueeze(0).to(device) |
|
y_g_hat = generator(x) |
|
audio = y_g_hat.squeeze() |
|
audio = audio * MAX_WAV_VALUE |
|
audio = audio.cpu().numpy().astype('int16') |
|
output_file = "gen.wav" |
|
write(output_file, h.sampling_rate, audio) |
|
vocoder_end = time.time() |
|
et = vocoder_end |
|
elapsed = (et-st) |
|
print(f"Total elapsed time: {elapsed}\nText Preprocess: {(preprocess_end-preprocess_start)}\nText-to-mel: {(t2s_end-t2s_start)}\nMel to wave: {(vocoder_end-vocoder_start)}") |
|
|