smritiiii27 commited on
Commit
2e3fc7b
1 Parent(s): 70d575c

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: SAC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.24 +/- 0.09
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **SAC** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **SAC** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7d2f068b5a20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d2f068be100>"}, "verbose": 1, "policy_kwargs": {"use_sde": false}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717098617998433100, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqCxSP6kr7j4Y/3o+fvbJPbju8r66W7i8RmmQv9TClz9EJVK/WKtWv5Rvqz9rlGu/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUqN9P9e9mT/4p9y+HqSEPIxOe7+IIbi/YqOev82DRz/dd4K/V/Esv6x+uT9RUbm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACoLFI/qSvuPhj/ej7pLrU9oroBQH6f479+9sk9uO7yvrpbuLzzqWW/BaAIwNZ/w79GaZC/1MKXP0QlUr+Okui/oDY1PxruGb9Yq1a/lG+rP2uUa78ZIIi/rWudPySujL+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.8209939 0.46517685 0.24511373]\n [ 0.09861468 -0.47447753 -0.02250468]\n [-1.1282127 1.1856332 -0.8208811 ]\n [-0.838552 1.3393426 -0.9202334 ]]", "desired_goal": "[[ 0.9907733 1.201106 -0.430969 ]\n [ 0.01619154 -0.9816673 -1.4385233 ]\n [-1.239361 0.7793549 -1.0192829 ]\n [-0.67555755 1.4491782 -1.4477941 ]]", "observation": "[[ 0.8209939 0.46517685 0.24511373 0.08846838 2.0270162 -1.7783048 ]\n [ 0.09861468 -0.47447753 -0.02250468 -0.89712447 -2.1347668 -1.5273387 ]\n [-1.1282127 1.1856332 -0.8208811 -1.8169725 0.70786476 -0.6012894 ]\n [-0.838552 1.3393426 -0.9202334 -1.0634795 1.2298485 -1.0990644 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1TWGPaouyjyMnTo+KfDqPCMoybw4sio+5eQKvVe3fz3gaPY9ELucvExakD36luo9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0KqrPcZJ3T2AYdM9V/Ghu7MDtr0evz88zVH0veRcjz125ks9QCeLvdCPBT558zE8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADVNYY9qi7KPIydOj7IfiK+Et6TPyDjq78p8Oo8IyjJvDiyKj5RNgS/hLmbvwnQl7/l5Aq9V7d/PeBo9j3psFm/143OPjZ6G78Qu5y8TFqQPfqW6j3MqxO/lW4zP1Ica7+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.06553236 0.02468045 0.18224162]\n [ 0.02867897 -0.02455527 0.16669548]\n [-0.0339097 0.06243071 0.12031722]\n [-0.01913217 0.07048473 0.11454578]]", "desired_goal": "[[ 0.08382189 0.10805087 0.10321331]\n [-0.0049421 -0.08887424 0.01170328]\n [-0.11929665 0.07000139 0.04978033]\n [-0.06794596 0.13043141 0.01086127]]", "observation": "[[ 0.06553236 0.02468045 0.18224162 -0.15868676 1.1552145 -1.3428688 ]\n [ 0.02867897 -0.02455527 0.16669548 -0.5164538 -1.216599 -1.1860362 ]\n [-0.0339097 0.06243071 0.12031722 -0.8503557 0.4034259 -0.60733354]\n [-0.01913217 0.07048473 0.11454578 -0.57684016 0.7009061 -0.9184009 ]]"}, "_episode_num": 302566, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8cyLyc0+C+MAWyUSwOMAXSUR0C0+tzg/C66dX2UKGgGR7+82/BWPtD2aAdLAmgIR0C0+rs2NvOydX2UKGgGR7/Nm4Ajps42aAdLA2gIR0C0+p3h86V/dX2UKGgGR7+wyM1jy4FzaAdLAmgIR0C0+sXCwbEQdX2UKGgGR7/OaZx7zCk5aAdLA2gIR0C0+w71M/QjdX2UKGgGR7/MoTfzjFQ3aAdLA2gIR0C0+u0GVzIWdX2UKGgGR7/AfPHDJlreaAdLAmgIR0C0+qjC+De1dX2UKGgGR7/ApgkTpPhyaAdLAmgIR0C0+tFloUSJdX2UKGgGR7/LcJMQEpy7aAdLA2gIR0C0+x/BeokzdX2UKGgGR7/Q0MgEEC/5aAdLA2gIR0C0+v2606YFdX2UKGgGR7+6k56t1ZDBaAdLAmgIR0C0+tv1pTMrdX2UKGgGR7/OXkYGdI5HaAdLA2gIR0C0+rk9U0emdX2UKGgGR7+SMkyDZlFuaAdLAWgIR0C0+yXarWAgdX2UKGgGR7/JkoWpIczZaAdLA2gIR0C0+w2R/3FldX2UKGgGR7/OZCOWBz3iaAdLA2gIR0C0+uvYvnKXdX2UKGgGR7/SFCb+cYqHaAdLA2gIR0C0+sk+s5n2dX2UKGgGR7+VMmF8G9pRaAdLAWgIR0C0+vF6/qPfdX2UKGgGR7+L7Kq4pc5baAdLAWgIR0C0+s7ngYP5dX2UKGgGR7/YN1hb4agmaAdLBGgIR0C0+zsyN4qxdX2UKGgGR7/YTA31jAi3aAdLBGgIR0C0+yMY2sJZdX2UKGgGR7/bTmW+oLofaAdLBGgIR0C0+wZtix3WdX2UKGgGR7/YG21D0DlpaAdLBGgIR0C0+uO5OJtSdX2UKGgGR7/XabWmP5pKaAdLBGgIR0C0+1A4S6DodX2UKGgGR7+5kH2RJVbSaAdLAmgIR0C0+y5EMLF5dX2UKGgGR7+2Y+jdpItlaAdLAmgIR0C0+xFpGnXNdX2UKGgGR7/RpH7P6be/aAdLA2gIR0C0+vN3np0PdX2UKGgGR7/QYqXnhbW3aAdLA2gIR0C0+z2606YFdX2UKGgGR7+3RWtEG7jDaAdLAmgIR0C0+xwPiDNAdX2UKGgGR7/bjN6gM+eOaAdLBGgIR0C0+2UIw/PgdX2UKGgGR7+yWE9Mbm2caAdLAmgIR0C0+yXryDqXdX2UKGgGR7+9IatLcsUZaAdLAmgIR0C0+29apxWDdX2UKGgGR7/gUt7KJVKgaAdLBGgIR0C0+wiswL3LdX2UKGgGR7/XEIgNgBtDaAdLBGgIR0C0+1I8+zMSdX2UKGgGR7/GzyBkI5YHaAdLA2gIR0C0+zVHWjGldX2UKGgGR7/SFA3T/hl2aAdLA2gIR0C0+38BhhH9dX2UKGgGR7/ALYPGyX2NaAdLAmgIR0C0+0Ag1WKedX2UKGgGR7/X189fTkQxaAdLBGgIR0C0+x2A08/2dX2UKGgGR7/S8wYcebNKaAdLBGgIR0C0+2ckY4yXdX2UKGgGR7/SO3UhFEy+aAdLA2gIR0C0+48Z9/jLdX2UKGgGR7+7mhdt2s7uaAdLAmgIR0C0+0tFz+3pdX2UKGgGR7/KKMNtqHoHaAdLA2gIR0C0+3c3VCokdX2UKGgGR7/YvpyIYWLxaAdLBGgIR0C0+zLKvFFVdX2UKGgGR7/Mc2itaIN3aAdLA2gIR0C0+58rEtNBdX2UKGgGR7++PluFYdQwaAdLAmgIR0C0+4QosqaxdX2UKGgGR7/aeUpuuRs/aAdLBGgIR0C0+2KUaAFxdX2UKGgGR7+pHqeK8+RpaAdLAWgIR0C0+2fo7muDdX2UKGgGR7/CWGh24d6taAdLA2gIR0C0+0U1dgOSdX2UKGgGR7+3fk3juKGdaAdLAmgIR0C0+4+uvECOdX2UKGgGR7/YRzRx95QhaAdLBGgIR0C0+7bKA8SxdX2UKGgGR7+RVdX1anrIaAdLAWgIR0C0+7vnbItEdX2UKGgGR7/RAY51eSjhaAdLA2gIR0C0+3gJokAxdX2UKGgGR7/M23rleWv9aAdLA2gIR0C0+1VQl8gIdX2UKGgGR7/V0eU6gdwOaAdLBGgIR0C0+6TySV4YdX2UKGgGR7/Ocpb2USqVaAdLA2gIR0C0+8xMvh60dX2UKGgGR7/MEQGwA2hqaAdLA2gIR0C0+4hmbsnidX2UKGgGR7/Cnrpqynk1aAdLAmgIR0C0+6/mDDjzdX2UKGgGR7/Yj2SMcZLqaAdLBGgIR0C0+2uNT987dX2UKGgGR7/CJ0GNaQmvaAdLAmgIR0C0+9e+Eh7mdX2UKGgGR7+mZLIxQBPsaAdLAWgIR0C0+7Wz0HyFdX2UKGgGR7+6EEkjX4CZaAdLAmgIR0C0+5P2bobGdX2UKGgGR7/DwKjSG8EnaAdLAmgIR0C0+8FKoQ4CdX2UKGgGR7/Z2606YE4eaAdLBGgIR0C0+4HkkrwwdX2UKGgGR7/W9uxbB42TaAdLBGgIR0C0++5BC2MLdX2UKGgGR7/VnOjZcs19aAdLBGgIR0C0+6qGxlg/dX2UKGgGR7/PEofCAMDwaAdLA2gIR0C0+9FPSDywdX2UKGgGR7/Q1Gb1AZ88aAdLA2gIR0C0+/1DOTq0dX2UKGgGR7+/bFjurp7kaAdLAmgIR0C0+9s189fUdX2UKGgGR7/RL+glF+d9aAdLBGgIR0C0+5a0UoKEdX2UKGgGR7/ZYywfQrtmaAdLBGgIR0C0+79UCJXRdX2UKGgGR7/Ld9Dx9XtCaAdLA2gIR0C0/A0cwQDndX2UKGgGR7/UNHYpUgjhaAdLA2gIR0C0++sX7+DOdX2UKGgGR7/SaNdZ7ojfaAdLA2gIR0C0+883ZPEbdX2UKGgGR7/YvECNjslcaAdLBGgIR0C0+6yX2M86dX2UKGgGR7++b4Ju2qkuaAdLAmgIR0C0+/Yjv/ipdX2UKGgGR7/QE4NqgyuZaAdLA2gIR0C0/B2wFC9idX2UKGgGR7+3E1l5GBnSaAdLAmgIR0C0+9nU2DQJdX2UKGgGR7/EAuqWC2+gaAdLAmgIR0C0/CdFSbYsdX2UKGgGR7/TkELYwqRVaAdLA2gIR0C0/AU+otL+dX2UKGgGR7/fk078vVVhaAdLBGgIR0C0+8Cg9NeudX2UKGgGR7/AgJTl1bJPaAdLAmgIR0C0/DIEnssydX2UKGgGR7/aOTJQtSQ6aAdLBGgIR0C0++5TyauwdX2UKGgGR7/Q7OVxCIDYaAdLA2gIR0C0/BT81n/UdX2UKGgGR7/NPmgam4y5aAdLA2gIR0C0+9B3aBZqdX2UKGgGR7+f8AJb+tKaaAdLAWgIR0C0+9ZGjKxLdX2UKGgGR7/Rf1pTMqz7aAdLA2gIR0C0/EH0oSctdX2UKGgGR7/IP8Q7LdN4aAdLA2gIR0C0/CTqv/zbdX2UKGgGR7/TxFRYRujzaAdLBGgIR0C0/ANPk7wKdX2UKGgGR7/I31jAi3XqaAdLA2gIR0C0++YtthuwdX2UKGgGR7/LVAAyVObiaAdLA2gIR0C0/FHqNZNgdX2UKGgGR7/QHGS6lLvkaAdLA2gIR0C0/DTWwu/UdX2UKGgGR7/RGXokiUxEaAdLA2gIR0C0/BM2NvOydX2UKGgGR7++EUTL4etCaAdLAmgIR0C0+/B4dIXkdX2UKGgGR7+/Sw4bS7XhaAdLAmgIR0C0/F0aIeo2dX2UKGgGR7+gysS00FbFaAdLAWgIR0C0/Bk/wAlwdX2UKGgGR7+WlImPYFq0aAdLAWgIR0C0+/apPykLdX2UKGgGR7/BWgezUqhEaAdLAmgIR0C0/EEnG828dX2UKGgGR7+/M2WIGhVVaAdLAmgIR0C0/CRBNVR2dX2UKGgGR7+0Er5IpYs/aAdLAmgIR0C0/AGGdqcmdX2UKGgGR7/RyYoiLVFyaAdLA2gIR0C0/G3iJfpmdX2UKGgGR7+tRYRujynUaAdLAmgIR0C0/EvX9R77dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhlLg=="}, "_n_updates": 249975, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function DictReplayBuffer.__init__ at 0x7d2f069ed900>", "add": "<function DictReplayBuffer.add at 0x7d2f069ed990>", "sample": "<function DictReplayBuffer.sample at 0x7d2f069eda20>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x7d2f069edab0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d2f069e6300>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -3.0, "ent_coef": "auto", "target_update_interval": 1, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVYQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihDoKEC1c8/0NHhjUw/ya11CjANpbmOUihFhQl8rhHgAE98giyZMFkSgAHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVoAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAgwAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlGgJKYwBX5SFlGgOjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUaBVOTmgdKVKUhZR0lFKUaCRoPn2UfZQoaBhoNWgnjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgpfZRoK05oLE5oLWgZaC5OaC9oMUc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaEZdlGhIfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.3.2", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (652 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.2386511407792568, "std_reward": 0.09000650481553879, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-30T21:21:25.951314"}
sac-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f439ff64b102bb67cd03692e634d52307a7d56e860ca8b897f216c10e11ad9e
3
+ size 3142844
sac-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.3.2
sac-PandaReachDense-v3/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af8b2bdbe7d71f8d5b05cb482c0c2dada49b87b6045784fc437cf348c9578a53
3
+ size 572238
sac-PandaReachDense-v3/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b2ebf92efb0aa87281b24d40b72f497504cf24b8bec2571820d5038232b92ce
3
+ size 1132458
sac-PandaReachDense-v3/data ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function MultiInputPolicy.__init__ at 0x7d2f068b5a20>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7d2f068be100>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ "use_sde": false
14
+ },
15
+ "num_timesteps": 1000000,
16
+ "_total_timesteps": 1000000,
17
+ "_num_timesteps_at_start": 0,
18
+ "seed": null,
19
+ "action_noise": null,
20
+ "start_time": 1717098617998433100,
21
+ "learning_rate": 0.0003,
22
+ "tensorboard_log": null,
23
+ "_last_obs": {
24
+ ":type:": "<class 'collections.OrderedDict'>",
25
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqCxSP6kr7j4Y/3o+fvbJPbju8r66W7i8RmmQv9TClz9EJVK/WKtWv5Rvqz9rlGu/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUqN9P9e9mT/4p9y+HqSEPIxOe7+IIbi/YqOev82DRz/dd4K/V/Esv6x+uT9RUbm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACoLFI/qSvuPhj/ej7pLrU9oroBQH6f479+9sk9uO7yvrpbuLzzqWW/BaAIwNZ/w79GaZC/1MKXP0QlUr+Okui/oDY1PxruGb9Yq1a/lG+rP2uUa78ZIIi/rWudPySujL+UaA5LBEsGhpRoEnSUUpR1Lg==",
26
+ "achieved_goal": "[[ 0.8209939 0.46517685 0.24511373]\n [ 0.09861468 -0.47447753 -0.02250468]\n [-1.1282127 1.1856332 -0.8208811 ]\n [-0.838552 1.3393426 -0.9202334 ]]",
27
+ "desired_goal": "[[ 0.9907733 1.201106 -0.430969 ]\n [ 0.01619154 -0.9816673 -1.4385233 ]\n [-1.239361 0.7793549 -1.0192829 ]\n [-0.67555755 1.4491782 -1.4477941 ]]",
28
+ "observation": "[[ 0.8209939 0.46517685 0.24511373 0.08846838 2.0270162 -1.7783048 ]\n [ 0.09861468 -0.47447753 -0.02250468 -0.89712447 -2.1347668 -1.5273387 ]\n [-1.1282127 1.1856332 -0.8208811 -1.8169725 0.70786476 -0.6012894 ]\n [-0.838552 1.3393426 -0.9202334 -1.0634795 1.2298485 -1.0990644 ]]"
29
+ },
30
+ "_last_episode_starts": {
31
+ ":type:": "<class 'numpy.ndarray'>",
32
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
33
+ },
34
+ "_last_original_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1TWGPaouyjyMnTo+KfDqPCMoybw4sio+5eQKvVe3fz3gaPY9ELucvExakD36luo9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0KqrPcZJ3T2AYdM9V/Ghu7MDtr0evz88zVH0veRcjz125ks9QCeLvdCPBT558zE8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADVNYY9qi7KPIydOj7IfiK+Et6TPyDjq78p8Oo8IyjJvDiyKj5RNgS/hLmbvwnQl7/l5Aq9V7d/PeBo9j3psFm/143OPjZ6G78Qu5y8TFqQPfqW6j3MqxO/lW4zP1Ica7+UaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.06553236 0.02468045 0.18224162]\n [ 0.02867897 -0.02455527 0.16669548]\n [-0.0339097 0.06243071 0.12031722]\n [-0.01913217 0.07048473 0.11454578]]",
38
+ "desired_goal": "[[ 0.08382189 0.10805087 0.10321331]\n [-0.0049421 -0.08887424 0.01170328]\n [-0.11929665 0.07000139 0.04978033]\n [-0.06794596 0.13043141 0.01086127]]",
39
+ "observation": "[[ 0.06553236 0.02468045 0.18224162 -0.15868676 1.1552145 -1.3428688 ]\n [ 0.02867897 -0.02455527 0.16669548 -0.5164538 -1.216599 -1.1860362 ]\n [-0.0339097 0.06243071 0.12031722 -0.8503557 0.4034259 -0.60733354]\n [-0.01913217 0.07048473 0.11454578 -0.57684016 0.7009061 -0.9184009 ]]"
40
+ },
41
+ "_episode_num": 302566,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": 0.0,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8cyLyc0+C+MAWyUSwOMAXSUR0C0+tzg/C66dX2UKGgGR7+82/BWPtD2aAdLAmgIR0C0+rs2NvOydX2UKGgGR7/Nm4Ajps42aAdLA2gIR0C0+p3h86V/dX2UKGgGR7+wyM1jy4FzaAdLAmgIR0C0+sXCwbEQdX2UKGgGR7/OaZx7zCk5aAdLA2gIR0C0+w71M/QjdX2UKGgGR7/MoTfzjFQ3aAdLA2gIR0C0+u0GVzIWdX2UKGgGR7/AfPHDJlreaAdLAmgIR0C0+qjC+De1dX2UKGgGR7/ApgkTpPhyaAdLAmgIR0C0+tFloUSJdX2UKGgGR7/LcJMQEpy7aAdLA2gIR0C0+x/BeokzdX2UKGgGR7/Q0MgEEC/5aAdLA2gIR0C0+v2606YFdX2UKGgGR7+6k56t1ZDBaAdLAmgIR0C0+tv1pTMrdX2UKGgGR7/OXkYGdI5HaAdLA2gIR0C0+rk9U0emdX2UKGgGR7+SMkyDZlFuaAdLAWgIR0C0+yXarWAgdX2UKGgGR7/JkoWpIczZaAdLA2gIR0C0+w2R/3FldX2UKGgGR7/OZCOWBz3iaAdLA2gIR0C0+uvYvnKXdX2UKGgGR7/SFCb+cYqHaAdLA2gIR0C0+sk+s5n2dX2UKGgGR7+VMmF8G9pRaAdLAWgIR0C0+vF6/qPfdX2UKGgGR7+L7Kq4pc5baAdLAWgIR0C0+s7ngYP5dX2UKGgGR7/YN1hb4agmaAdLBGgIR0C0+zsyN4qxdX2UKGgGR7/YTA31jAi3aAdLBGgIR0C0+yMY2sJZdX2UKGgGR7/bTmW+oLofaAdLBGgIR0C0+wZtix3WdX2UKGgGR7/YG21D0DlpaAdLBGgIR0C0+uO5OJtSdX2UKGgGR7/XabWmP5pKaAdLBGgIR0C0+1A4S6DodX2UKGgGR7+5kH2RJVbSaAdLAmgIR0C0+y5EMLF5dX2UKGgGR7+2Y+jdpItlaAdLAmgIR0C0+xFpGnXNdX2UKGgGR7/RpH7P6be/aAdLA2gIR0C0+vN3np0PdX2UKGgGR7/QYqXnhbW3aAdLA2gIR0C0+z2606YFdX2UKGgGR7+3RWtEG7jDaAdLAmgIR0C0+xwPiDNAdX2UKGgGR7/bjN6gM+eOaAdLBGgIR0C0+2UIw/PgdX2UKGgGR7+yWE9Mbm2caAdLAmgIR0C0+yXryDqXdX2UKGgGR7+9IatLcsUZaAdLAmgIR0C0+29apxWDdX2UKGgGR7/gUt7KJVKgaAdLBGgIR0C0+wiswL3LdX2UKGgGR7/XEIgNgBtDaAdLBGgIR0C0+1I8+zMSdX2UKGgGR7/GzyBkI5YHaAdLA2gIR0C0+zVHWjGldX2UKGgGR7/SFA3T/hl2aAdLA2gIR0C0+38BhhH9dX2UKGgGR7/ALYPGyX2NaAdLAmgIR0C0+0Ag1WKedX2UKGgGR7/X189fTkQxaAdLBGgIR0C0+x2A08/2dX2UKGgGR7/S8wYcebNKaAdLBGgIR0C0+2ckY4yXdX2UKGgGR7/SO3UhFEy+aAdLA2gIR0C0+48Z9/jLdX2UKGgGR7+7mhdt2s7uaAdLAmgIR0C0+0tFz+3pdX2UKGgGR7/KKMNtqHoHaAdLA2gIR0C0+3c3VCokdX2UKGgGR7/YvpyIYWLxaAdLBGgIR0C0+zLKvFFVdX2UKGgGR7/Mc2itaIN3aAdLA2gIR0C0+58rEtNBdX2UKGgGR7++PluFYdQwaAdLAmgIR0C0+4QosqaxdX2UKGgGR7/aeUpuuRs/aAdLBGgIR0C0+2KUaAFxdX2UKGgGR7+pHqeK8+RpaAdLAWgIR0C0+2fo7muDdX2UKGgGR7/CWGh24d6taAdLA2gIR0C0+0U1dgOSdX2UKGgGR7+3fk3juKGdaAdLAmgIR0C0+4+uvECOdX2UKGgGR7/YRzRx95QhaAdLBGgIR0C0+7bKA8SxdX2UKGgGR7+RVdX1anrIaAdLAWgIR0C0+7vnbItEdX2UKGgGR7/RAY51eSjhaAdLA2gIR0C0+3gJokAxdX2UKGgGR7/M23rleWv9aAdLA2gIR0C0+1VQl8gIdX2UKGgGR7/V0eU6gdwOaAdLBGgIR0C0+6TySV4YdX2UKGgGR7/Ocpb2USqVaAdLA2gIR0C0+8xMvh60dX2UKGgGR7/MEQGwA2hqaAdLA2gIR0C0+4hmbsnidX2UKGgGR7/Cnrpqynk1aAdLAmgIR0C0+6/mDDjzdX2UKGgGR7/Yj2SMcZLqaAdLBGgIR0C0+2uNT987dX2UKGgGR7/CJ0GNaQmvaAdLAmgIR0C0+9e+Eh7mdX2UKGgGR7+mZLIxQBPsaAdLAWgIR0C0+7Wz0HyFdX2UKGgGR7+6EEkjX4CZaAdLAmgIR0C0+5P2bobGdX2UKGgGR7/DwKjSG8EnaAdLAmgIR0C0+8FKoQ4CdX2UKGgGR7/Z2606YE4eaAdLBGgIR0C0+4HkkrwwdX2UKGgGR7/W9uxbB42TaAdLBGgIR0C0++5BC2MLdX2UKGgGR7/VnOjZcs19aAdLBGgIR0C0+6qGxlg/dX2UKGgGR7/PEofCAMDwaAdLA2gIR0C0+9FPSDywdX2UKGgGR7/Q1Gb1AZ88aAdLA2gIR0C0+/1DOTq0dX2UKGgGR7+/bFjurp7kaAdLAmgIR0C0+9s189fUdX2UKGgGR7/RL+glF+d9aAdLBGgIR0C0+5a0UoKEdX2UKGgGR7/ZYywfQrtmaAdLBGgIR0C0+79UCJXRdX2UKGgGR7/Ld9Dx9XtCaAdLA2gIR0C0/A0cwQDndX2UKGgGR7/UNHYpUgjhaAdLA2gIR0C0++sX7+DOdX2UKGgGR7/SaNdZ7ojfaAdLA2gIR0C0+883ZPEbdX2UKGgGR7/YvECNjslcaAdLBGgIR0C0+6yX2M86dX2UKGgGR7++b4Ju2qkuaAdLAmgIR0C0+/Yjv/ipdX2UKGgGR7/QE4NqgyuZaAdLA2gIR0C0/B2wFC9idX2UKGgGR7+3E1l5GBnSaAdLAmgIR0C0+9nU2DQJdX2UKGgGR7/EAuqWC2+gaAdLAmgIR0C0/CdFSbYsdX2UKGgGR7/TkELYwqRVaAdLA2gIR0C0/AU+otL+dX2UKGgGR7/fk078vVVhaAdLBGgIR0C0+8Cg9NeudX2UKGgGR7/AgJTl1bJPaAdLAmgIR0C0/DIEnssydX2UKGgGR7/aOTJQtSQ6aAdLBGgIR0C0++5TyauwdX2UKGgGR7/Q7OVxCIDYaAdLA2gIR0C0/BT81n/UdX2UKGgGR7/NPmgam4y5aAdLA2gIR0C0+9B3aBZqdX2UKGgGR7+f8AJb+tKaaAdLAWgIR0C0+9ZGjKxLdX2UKGgGR7/Rf1pTMqz7aAdLA2gIR0C0/EH0oSctdX2UKGgGR7/IP8Q7LdN4aAdLA2gIR0C0/CTqv/zbdX2UKGgGR7/TxFRYRujzaAdLBGgIR0C0/ANPk7wKdX2UKGgGR7/I31jAi3XqaAdLA2gIR0C0++YtthuwdX2UKGgGR7/LVAAyVObiaAdLA2gIR0C0/FHqNZNgdX2UKGgGR7/QHGS6lLvkaAdLA2gIR0C0/DTWwu/UdX2UKGgGR7/RGXokiUxEaAdLA2gIR0C0/BM2NvOydX2UKGgGR7++EUTL4etCaAdLAmgIR0C0+/B4dIXkdX2UKGgGR7+/Sw4bS7XhaAdLAmgIR0C0/F0aIeo2dX2UKGgGR7+gysS00FbFaAdLAWgIR0C0/Bk/wAlwdX2UKGgGR7+WlImPYFq0aAdLAWgIR0C0+/apPykLdX2UKGgGR7/BWgezUqhEaAdLAmgIR0C0/EEnG828dX2UKGgGR7+/M2WIGhVVaAdLAmgIR0C0/CRBNVR2dX2UKGgGR7+0Er5IpYs/aAdLAmgIR0C0/AGGdqcmdX2UKGgGR7/RyYoiLVFyaAdLA2gIR0C0/G3iJfpmdX2UKGgGR7+tRYRujynUaAdLAmgIR0C0/EvX9R77dWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhlLg=="
53
+ },
54
+ "_n_updates": 249975,
55
+ "buffer_size": 1000000,
56
+ "batch_size": 256,
57
+ "learning_starts": 100,
58
+ "tau": 0.005,
59
+ "gamma": 0.99,
60
+ "gradient_steps": 1,
61
+ "optimize_memory_usage": false,
62
+ "replay_buffer_class": {
63
+ ":type:": "<class 'abc.ABCMeta'>",
64
+ ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=",
65
+ "__module__": "stable_baselines3.common.buffers",
66
+ "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}",
67
+ "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
68
+ "__init__": "<function DictReplayBuffer.__init__ at 0x7d2f069ed900>",
69
+ "add": "<function DictReplayBuffer.add at 0x7d2f069ed990>",
70
+ "sample": "<function DictReplayBuffer.sample at 0x7d2f069eda20>",
71
+ "_get_samples": "<function DictReplayBuffer._get_samples at 0x7d2f069edab0>",
72
+ "__abstractmethods__": "frozenset()",
73
+ "_abc_impl": "<_abc._abc_data object at 0x7d2f069e6300>"
74
+ },
75
+ "replay_buffer_kwargs": {},
76
+ "train_freq": {
77
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
78
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
79
+ },
80
+ "use_sde_at_warmup": false,
81
+ "target_entropy": -3.0,
82
+ "ent_coef": "auto",
83
+ "target_update_interval": 1,
84
+ "observation_space": {
85
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
86
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
87
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
88
+ "_shape": null,
89
+ "dtype": null,
90
+ "_np_random": null
91
+ },
92
+ "action_space": {
93
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
94
+ ":serialized:": "gAWVYQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihDoKEC1c8/0NHhjUw/ya11CjANpbmOUihFhQl8rhHgAE98giyZMFkSgAHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
95
+ "dtype": "float32",
96
+ "bounded_below": "[ True True True]",
97
+ "bounded_above": "[ True True True]",
98
+ "_shape": [
99
+ 3
100
+ ],
101
+ "low": "[-1. -1. -1.]",
102
+ "high": "[1. 1. 1.]",
103
+ "low_repr": "-1.0",
104
+ "high_repr": "1.0",
105
+ "_np_random": "Generator(PCG64)"
106
+ },
107
+ "n_envs": 4,
108
+ "lr_schedule": {
109
+ ":type:": "<class 'function'>",
110
+ ":serialized:": "gAWVoAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAgwAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlGgJKYwBX5SFlGgOjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUaBVOTmgdKVKUhZR0lFKUaCRoPn2UfZQoaBhoNWgnjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgpfZRoK05oLE5oLWgZaC5OaC9oMUc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaEZdlGhIfZR1hpSGUjAu"
111
+ },
112
+ "batch_norm_stats": [],
113
+ "batch_norm_stats_target": []
114
+ }
sac-PandaReachDense-v3/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6fd076ca1e8ff0632ff84417aab6fb7bc541c5d3c77f537b5f84d51f73ab220
3
+ size 1940
sac-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9004fcb4ba2b5798a4dc04d5fadd2ecb0fd8fe434d0b03b235215d02d5ac411e
3
+ size 1417078
sac-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a58089302787ca7ac2f61aa18b588e8b344fd0bf1630a475c4a70b3046265dde
3
+ size 1180
sac-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.3.2
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b4a1cc40ad7d79546db836fecc775f01b2b17a72d45d24d447574770b3e9e5a
3
+ size 2861