|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from dataclasses import dataclass |
|
from typing import Any, Callable, Dict, List, Optional, Union, Tuple |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection |
|
|
|
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
from diffusers.loaders import IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin |
|
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel, ControlNetModel |
|
from diffusers.models.lora import adjust_lora_scale_text_encoder |
|
from diffusers.models.unet_motion_model import MotionAdapter |
|
from diffusers.schedulers import ( |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
) |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
BaseOutput, |
|
logging, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor |
|
|
|
|
|
from diffusers.models import ControlNetModel |
|
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.utils import deprecate |
|
|
|
import torchvision |
|
import PIL |
|
import PIL.Image |
|
import math |
|
import time |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler |
|
>>> from diffusers.utils import export_to_gif |
|
>>> adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2") |
|
>>> pipe = AnimateDiffPipeline.from_pretrained("frankjoshua/toonyou_beta6", motion_adapter=adapter) |
|
>>> pipe.scheduler = DDIMScheduler(beta_schedule="linear", steps_offset=1, clip_sample=False) |
|
>>> output = pipe(prompt="A corgi walking in the park") |
|
>>> frames = output.frames[0] |
|
>>> export_to_gif(frames, "animation.gif") |
|
``` |
|
""" |
|
|
|
def retrieve_latents( |
|
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" |
|
): |
|
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": |
|
return encoder_output.latent_dist.sample(generator) |
|
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": |
|
return encoder_output.latent_dist.mode() |
|
elif hasattr(encoder_output, "latents"): |
|
return encoder_output.latents |
|
else: |
|
raise AttributeError("Could not access latents of provided encoder_output") |
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
Args: |
|
scheduler (`SchedulerMixin`): |
|
The scheduler to get timesteps from. |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, |
|
`timesteps` must be `None`. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default |
|
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` |
|
must be `None`. |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
second element is the number of inference steps. |
|
""" |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
|
|
|
|
|
|
|
|
|
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
def tensor2vid(video: torch.Tensor, processor, output_type="np"): |
|
|
|
|
|
|
|
batch_size, channels, num_frames, height, width = video.shape |
|
outputs = [] |
|
for batch_idx in range(batch_size): |
|
batch_vid = video[batch_idx].permute(1, 0, 2, 3) |
|
batch_output = processor.postprocess(batch_vid, output_type) |
|
|
|
outputs.append(batch_output) |
|
|
|
return outputs |
|
|
|
@dataclass |
|
class AnimateDiffPipelineOutput(BaseOutput): |
|
frames: Union[torch.Tensor, np.ndarray] |
|
|
|
class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin): |
|
r""" |
|
Pipeline for text-to-video generation. |
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
The pipeline also inherits the following loading methods: |
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings |
|
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights |
|
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights |
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters |
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). |
|
tokenizer (`CLIPTokenizer`): |
|
A [`~transformers.CLIPTokenizer`] to tokenize text. |
|
unet ([`UNet2DConditionModel`]): |
|
A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents. |
|
motion_adapter ([`MotionAdapter`]): |
|
A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" |
|
_optional_components = ["feature_extractor", "image_encoder","controlnet"] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
motion_adapter: MotionAdapter, |
|
scheduler: Union[ |
|
DDIMScheduler, |
|
PNDMScheduler, |
|
LMSDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
DPMSolverMultistepScheduler, |
|
], |
|
controlnet: Optional[Union[ControlNetModel, MultiControlNetModel]]=None, |
|
feature_extractor: Optional[CLIPImageProcessor] = None, |
|
image_encoder: Optional[CLIPVisionModelWithProjection] = None, |
|
): |
|
super().__init__() |
|
unet = UNetMotionModel.from_unet2d(unet, motion_adapter) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
motion_adapter=motion_adapter, |
|
controlnet=controlnet, |
|
scheduler=scheduler, |
|
feature_extractor=feature_extractor, |
|
image_encoder=image_encoder, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.control_image_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False |
|
) |
|
|
|
def load_motion_adapter(self,motion_adapter): |
|
self.register_modules(motion_adapter=motion_adapter) |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
clip_skip: Optional[int] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
lora_scale (`float`, *optional*): |
|
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
""" |
|
|
|
|
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) |
|
else: |
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
if clip_skip is None: |
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) |
|
prompt_embeds = prompt_embeds[0] |
|
else: |
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True |
|
) |
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] |
|
|
|
|
|
|
|
|
|
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) |
|
|
|
if self.text_encoder is not None: |
|
prompt_embeds_dtype = self.text_encoder.dtype |
|
elif self.unet is not None: |
|
prompt_embeds_dtype = self.unet.dtype |
|
else: |
|
prompt_embeds_dtype = prompt_embeds.dtype |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
return prompt_embeds, negative_prompt_embeds |
|
|
|
|
|
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): |
|
dtype = next(self.image_encoder.parameters()).dtype |
|
|
|
if not isinstance(image, torch.Tensor): |
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
if output_hidden_states: |
|
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] |
|
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) |
|
uncond_image_enc_hidden_states = self.image_encoder( |
|
torch.zeros_like(image), output_hidden_states=True |
|
).hidden_states[-2] |
|
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( |
|
num_images_per_prompt, dim=0 |
|
) |
|
return image_enc_hidden_states, uncond_image_enc_hidden_states |
|
else: |
|
image_embeds = self.image_encoder(image).image_embeds |
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
uncond_image_embeds = torch.zeros_like(image_embeds) |
|
|
|
return image_embeds, uncond_image_embeds |
|
|
|
|
|
def decode_latents(self, latents): |
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
|
|
batch_size, channels, num_frames, height, width = latents.shape |
|
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) |
|
|
|
image = self.vae.decode(latents).sample |
|
video = ( |
|
image[None, :] |
|
.reshape( |
|
( |
|
batch_size, |
|
num_frames, |
|
-1, |
|
) |
|
+ image.shape[2:] |
|
) |
|
.permute(0, 2, 1, 3, 4) |
|
) |
|
|
|
video = video.float() |
|
return video |
|
|
|
|
|
def enable_vae_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.vae.enable_slicing() |
|
|
|
|
|
def disable_vae_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_slicing() |
|
|
|
|
|
def enable_vae_tiling(self): |
|
r""" |
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow |
|
processing larger images. |
|
""" |
|
self.vae.enable_tiling() |
|
|
|
|
|
def disable_vae_tiling(self): |
|
r""" |
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_tiling() |
|
|
|
|
|
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): |
|
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497. |
|
The suffixes after the scaling factors represent the stages where they are being applied. |
|
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values |
|
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. |
|
Args: |
|
s1 (`float`): |
|
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to |
|
mitigate "oversmoothing effect" in the enhanced denoising process. |
|
s2 (`float`): |
|
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to |
|
mitigate "oversmoothing effect" in the enhanced denoising process. |
|
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. |
|
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. |
|
""" |
|
if not hasattr(self, "unet"): |
|
raise ValueError("The pipeline must have `unet` for using FreeU.") |
|
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2) |
|
|
|
|
|
def disable_freeu(self): |
|
"""Disables the FreeU mechanism if enabled.""" |
|
self.unet.disable_freeu() |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
callback_on_step_end_tensor_inputs=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
num_frames, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def prepare_latents_same_start(self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None, context_size=16, overlap=4, strength=0.5): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
num_frames, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
loop_size = context_size - overlap |
|
loop_count = num_frames // loop_size |
|
for i in range(loop_count): |
|
|
|
|
|
latents[:, :, i*loop_size:(i*loop_size)+overlap, :, :] = torch.lerp(latents[:, :, i*loop_size:(i*loop_size)+overlap, :, :], latents[:, :, 0:overlap, :, :], strength) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def prepare_latents_consistent(self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None,smooth_weight=0.5,smooth_steps=3): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
num_frames, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
|
|
|
for i in range(num_frames): |
|
blended_latent = torch.zeros_like(latents[:, :, i]) |
|
for s in range(-smooth_steps, smooth_steps + 1): |
|
if s == 0: |
|
continue |
|
frame_index = (i + s) % num_frames |
|
weight = (smooth_steps - abs(s)) / smooth_steps |
|
blended_latent += latents[:, :, frame_index] * weight |
|
latents[:, :, i] = blended_latent / (2 * smooth_steps) |
|
|
|
latents = torch.lerp(randn_tensor(shape, generator=generator, device=device, dtype=dtype),latents, smooth_weight) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def prepare_motion_latents(self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, |
|
latents=None, x_velocity=0, y_velocity=0, scale_velocity=0): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
num_frames, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
|
|
for frame in range(num_frames): |
|
x_offset = int(frame * x_velocity) |
|
y_offset = int(frame * y_velocity) |
|
scale_factor = 1 + frame * scale_velocity |
|
|
|
|
|
latents[:, :, frame] = torch.roll(latents[:, :, frame], shifts=(x_offset,), dims=3) |
|
latents[:, :, frame] = torch.roll(latents[:, :, frame], shifts=(y_offset,), dims=2) |
|
|
|
|
|
if scale_factor != 1: |
|
scaled_size = ( |
|
int(latents.shape[3] * scale_factor), |
|
int(latents.shape[4] * scale_factor) |
|
) |
|
latents[:, :, frame] = torch.nn.functional.interpolate( |
|
latents[:, :, frame].unsqueeze(0), size=scaled_size, mode='bilinear', align_corners=False |
|
).squeeze(0) |
|
|
|
return latents |
|
|
|
def generate_correlated_noise(self, latents, init_noise_correlation): |
|
cloned_latents = latents.clone() |
|
p = init_noise_correlation |
|
flattened_latents = torch.flatten(cloned_latents) |
|
noise = torch.randn_like(flattened_latents) |
|
correlated_noise = flattened_latents * p + math.sqrt(1 - p**2) * noise |
|
|
|
return correlated_noise.reshape(cloned_latents.shape) |
|
|
|
def generate_correlated_latents(self, latents, init_noise_correlation): |
|
cloned_latents = latents.clone() |
|
for i in range(1, cloned_latents.shape[2]): |
|
p = init_noise_correlation |
|
flattened_latents = torch.flatten(cloned_latents[:, :, i]) |
|
prev_flattened_latents = torch.flatten(cloned_latents[:, :, i - 1]) |
|
correlated_latents = (prev_flattened_latents * p/math.sqrt((1+p**2))+flattened_latents * math.sqrt(1/(1 + p**2))) |
|
cloned_latents[:, :, i] = correlated_latents.reshape(cloned_latents[:, :, i].shape) |
|
|
|
return cloned_latents |
|
|
|
def generate_correlated_latents_legacy(self, latents, init_noise_correlation): |
|
cloned_latents = latents.clone() |
|
for i in range(1, cloned_latents.shape[2]): |
|
p = init_noise_correlation |
|
flattened_latents = torch.flatten(cloned_latents[:, :, i]) |
|
prev_flattened_latents = torch.flatten(cloned_latents[:, :, i - 1]) |
|
correlated_latents = ( |
|
prev_flattened_latents * p |
|
+ |
|
flattened_latents * math.sqrt(1 - p**2) |
|
) |
|
cloned_latents[:, :, i] = correlated_latents.reshape( |
|
cloned_latents[:, :, i].shape |
|
) |
|
|
|
return cloned_latents |
|
|
|
def generate_mixed_noise(self, noise, init_noise_correlation): |
|
shared_noise = torch.randn_like(noise[0, :, 0]) |
|
for b in range(noise.shape[0]): |
|
for f in range(noise.shape[2]): |
|
p = init_noise_correlation |
|
flattened_latents = torch.flatten(noise[b, :, f]) |
|
shared_latents = torch.flatten(shared_noise) |
|
correlated_latents = ( |
|
shared_latents * math.sqrt(p**2/(1+p**2)) + |
|
flattened_latents * math.sqrt(1/(1+p**2)) |
|
) |
|
noise[b, :, f] = correlated_latents.reshape(noise[b, :, f].shape) |
|
|
|
return noise |
|
|
|
def prepare_correlated_latents( |
|
self, |
|
init_image, |
|
init_image_strength, |
|
init_noise_correlation, |
|
batch_size, |
|
num_channels_latents, |
|
video_length, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
video_length, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
|
|
if init_image is not None: |
|
start_image = ((torchvision.transforms.functional.pil_to_tensor(init_image))/ 255 )[:3, :, :].to("cuda").to(dtype).unsqueeze(0) |
|
start_image = ( |
|
self.vae.encode(start_image.mul(2).sub(1)) |
|
.latent_dist.sample() |
|
.view(1, 4, height // 8, width // 8) |
|
* 0.18215 |
|
) |
|
init_latents = start_image.unsqueeze(2).repeat(1, 1, video_length, 1, 1) |
|
else: |
|
init_latents = None |
|
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
if latents is None: |
|
rand_device = "cpu" if device.type == "mps" else device |
|
if isinstance(generator, list): |
|
shape = shape |
|
|
|
|
|
latents = [torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)for i in range(batch_size)] |
|
latents = torch.cat(latents, dim=0).to(device) |
|
else: |
|
if init_latents is not None: |
|
offset = int( |
|
init_image_strength * (len(self.scheduler.timesteps) - 1) |
|
) |
|
noise = torch.randn_like(init_latents) |
|
noise = self.generate_correlated_latents(noise, init_noise_correlation) |
|
|
|
|
|
|
|
|
|
|
|
timesteps = self.scheduler.timesteps |
|
average_timestep = None |
|
if offset == 0: |
|
average_timestep = timesteps[0] |
|
elif offset == 1: |
|
average_timestep = ( |
|
timesteps[offset - 1] * (1 - init_image_strength) |
|
+ timesteps[offset] * init_image_strength |
|
) |
|
else: |
|
average_timestep = timesteps[offset - 1] |
|
|
|
latents = self.scheduler.add_noise( |
|
init_latents, noise, average_timestep.long() |
|
) |
|
|
|
latents = self.scheduler.add_noise( |
|
latents, torch.randn_like(init_latents), timesteps[-2] |
|
) |
|
else: |
|
latents = torch.randn( |
|
shape, generator=generator, device=rand_device, dtype=dtype |
|
).to(device) |
|
latents = self.generate_correlated_latents( |
|
latents, init_noise_correlation |
|
) |
|
else: |
|
if latents.shape != shape: |
|
raise ValueError( |
|
f"Unexpected latents shape, got {latents.shape}, expected {shape}" |
|
) |
|
latents = latents.to(device) |
|
|
|
|
|
if init_latents is None: |
|
latents = latents * self.scheduler.init_noise_sigma |
|
|
|
|
|
|
|
|
|
latents = latents.to(device) |
|
return latents, init_latents |
|
|
|
def prepare_video_latents( |
|
self, |
|
video, |
|
height, |
|
width, |
|
num_channels_latents, |
|
batch_size, |
|
timestep, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
): |
|
|
|
|
|
|
|
if not isinstance(video[0], list): |
|
video = [video] |
|
if latents is None: |
|
video = torch.cat( |
|
[self.image_processor.preprocess(vid, height=height, width=width).unsqueeze(0) for vid in video], dim=0 |
|
) |
|
video = video.to(device=device, dtype=dtype) |
|
num_frames = video.shape[1] |
|
else: |
|
num_frames = latents.shape[2] |
|
|
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
num_frames, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
|
|
if self.vae.config.force_upcast: |
|
video = video.float() |
|
self.vae.to(dtype=torch.float32) |
|
|
|
if isinstance(generator, list): |
|
if len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
init_latents = [ |
|
retrieve_latents(self.vae.encode(video[i]), generator=generator[i]).unsqueeze(0) |
|
for i in range(batch_size) |
|
] |
|
else: |
|
init_latents = [ |
|
retrieve_latents(self.vae.encode(vid), generator=generator).unsqueeze(0) for vid in video |
|
] |
|
|
|
init_latents = torch.cat(init_latents, dim=0) |
|
|
|
|
|
if self.vae.config.force_upcast: |
|
self.vae.to(dtype) |
|
|
|
init_latents = init_latents.to(dtype) |
|
init_latents = self.vae.config.scaling_factor * init_latents |
|
|
|
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: |
|
|
|
error_message = ( |
|
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" |
|
" images (`image`). Please make sure to update your script to pass as many initial images as text prompts" |
|
) |
|
raise ValueError(error_message) |
|
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: |
|
raise ValueError( |
|
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." |
|
) |
|
else: |
|
init_latents = torch.cat([init_latents], dim=0) |
|
|
|
noise = randn_tensor(init_latents.shape, generator=generator, device=device, dtype=dtype) |
|
latents = self.scheduler.add_noise(init_latents, noise, timestep).permute(0, 2, 1, 3, 4) |
|
else: |
|
if shape != latents.shape: |
|
|
|
raise ValueError(f"`latents` expected to have {shape=}, but found {latents.shape=}") |
|
latents = latents.to(device, dtype=dtype) |
|
|
|
return latents |
|
|
|
|
|
|
|
def prepare_control_frames( |
|
self, |
|
image, |
|
width, |
|
height, |
|
batch_size, |
|
num_images_per_prompt, |
|
device, |
|
dtype, |
|
do_classifier_free_guidance=False, |
|
guess_mode=False, |
|
): |
|
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) |
|
|
|
image_batch_size = len(image) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
|
|
|
|
|
|
return image |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
num_frames: Optional[int] = 16, |
|
context_size=16, |
|
overlap=2, |
|
step=1, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_videos_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
output_type: Optional[str] = "pil", |
|
output_path: Optional[str] = None, |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
clip_skip: Optional[int] = None, |
|
x_velocity: Optional[float] = 0, |
|
y_velocity: Optional[float] = 0, |
|
scale_velocity: Optional[float] = 0, |
|
init_image: Optional[PipelineImageInput] = None, |
|
init_image_strength: Optional[float] = 1.0, |
|
init_noise_correlation: Optional[float] = 0.0, |
|
latent_mode: Optional[str] = "normal", |
|
smooth_weight: Optional[float] = 0.5, |
|
smooth_steps: Optional[int] = 3, |
|
initial_context_scale: Optional[float] = 1.0, |
|
conditioning_frames: Optional[List[PipelineImageInput]] = None, |
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0, |
|
control_guidance_start: Union[float, List[float]] = 0.0, |
|
control_guidance_end: Union[float, List[float]] = 1.0, |
|
guess_mode: bool = False, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated video. |
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated video. |
|
num_frames (`int`, *optional*, defaults to 16): |
|
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds |
|
amounts to 2 seconds of video. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. Latents should be of shape |
|
`(batch_size, num_channel, num_frames, height, width)`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated video. Choose between `torch.FloatTensor`, `PIL.Image` or |
|
`np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead |
|
of a plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
Examples: |
|
Returns: |
|
[`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is |
|
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. |
|
""" |
|
|
|
if self.controlnet != None: |
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet |
|
|
|
|
|
control_end = control_guidance_end |
|
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): |
|
control_guidance_start = len(control_guidance_end) * [control_guidance_start] |
|
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): |
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end] |
|
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): |
|
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 |
|
control_guidance_start, control_guidance_end = ( |
|
mult * [control_guidance_start], |
|
mult * [control_guidance_end], |
|
) |
|
|
|
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
num_videos_per_prompt = 1 |
|
|
|
|
|
self.check_inputs( |
|
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
if self.controlnet != None: |
|
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): |
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) |
|
|
|
global_pool_conditions = ( |
|
controlnet.config.global_pool_conditions |
|
if isinstance(controlnet, ControlNetModel) |
|
else controlnet.nets[0].config.global_pool_conditions |
|
) |
|
guess_mode = guess_mode or global_pool_conditions |
|
|
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None |
|
) |
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_videos_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
clip_skip=clip_skip, |
|
) |
|
|
|
|
|
|
|
if do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
if ip_adapter_image is not None: |
|
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True |
|
image_embeds, negative_image_embeds = self.encode_image( |
|
ip_adapter_image, device, num_videos_per_prompt, output_hidden_state |
|
) |
|
if do_classifier_free_guidance: |
|
image_embeds = torch.cat([negative_image_embeds, image_embeds]) |
|
|
|
if self.controlnet != None: |
|
if isinstance(controlnet, ControlNetModel): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
conditioning_frames = self.prepare_control_frames( |
|
image=conditioning_frames, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_videos_per_prompt * num_frames, |
|
num_images_per_prompt=num_videos_per_prompt, |
|
device=device, |
|
dtype=controlnet.dtype, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
guess_mode=guess_mode, |
|
) |
|
|
|
elif isinstance(controlnet, MultiControlNetModel): |
|
cond_prepared_frames = [] |
|
for frame_ in conditioning_frames: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prepared_frame = self.prepare_control_frames( |
|
image=frame_, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_videos_per_prompt * num_frames, |
|
num_images_per_prompt=num_videos_per_prompt, |
|
device=device, |
|
dtype=controlnet.dtype, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
guess_mode=guess_mode, |
|
) |
|
|
|
cond_prepared_frames.append(prepared_frame) |
|
|
|
conditioning_frames = cond_prepared_frames |
|
else: |
|
assert False |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
|
|
num_frames = (num_frames // (context_size - overlap)) * (context_size - overlap) |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
if(latent_mode == "normal"): |
|
latents = self.prepare_latents( |
|
batch_size * num_videos_per_prompt, |
|
num_channels_latents, |
|
num_frames, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
if(latent_mode == "same_start"): |
|
latents = self.prepare_latents_same_start( |
|
batch_size * num_videos_per_prompt, |
|
num_channels_latents, |
|
num_frames, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
context_size=context_size, |
|
overlap=overlap, |
|
strength=init_image_strength, |
|
) |
|
elif(latent_mode == "motion"): |
|
latents = self.prepare_motion_latents( |
|
batch_size * num_videos_per_prompt, |
|
num_channels_latents, |
|
num_frames, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
x_velocity=x_velocity, |
|
y_velocity=y_velocity, |
|
scale_velocity=scale_velocity, |
|
) |
|
elif(latent_mode == "correlated"): |
|
latents, init_latents = self.prepare_correlated_latents( |
|
init_image, |
|
init_image_strength, |
|
init_noise_correlation, |
|
batch_size, |
|
num_channels_latents, |
|
num_frames, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
) |
|
elif(latent_mode == "consistent"): |
|
latents = self.prepare_latents_consistent( |
|
batch_size * num_videos_per_prompt, |
|
num_channels_latents, |
|
num_frames, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
smooth_weight, |
|
smooth_steps, |
|
) |
|
elif(latent_mode == "video"): |
|
|
|
|
|
|
|
latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt) |
|
self._num_timesteps = len(timesteps) |
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_video_latents( |
|
video=init_image, |
|
height=height, |
|
width=width, |
|
num_channels_latents=num_channels_latents, |
|
batch_size=batch_size * num_videos_per_prompt, |
|
timestep=latent_timestep, |
|
dtype=prompt_embeds.dtype, |
|
device=device, |
|
generator=generator, |
|
latents=latents, |
|
) |
|
|
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None |
|
|
|
|
|
if self.controlnet != None: |
|
controlnet_keep = [] |
|
for i in range(len(timesteps)): |
|
keeps = [ |
|
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) |
|
for s, e in zip(control_guidance_start, control_guidance_end) |
|
] |
|
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) |
|
|
|
|
|
|
|
def context_scheduler(context_size, overlap, offset, total_frames, total_timesteps): |
|
|
|
number_of_context_groups = (total_frames // (context_size - overlap)) |
|
|
|
all_context_indexes = [] |
|
|
|
for timestep in range(total_timesteps): |
|
|
|
timestep_context_groups = [] |
|
|
|
for group_index in range(number_of_context_groups): |
|
|
|
context_group_indexes = [] |
|
|
|
local_context_size = context_size |
|
if timestep <= 1: |
|
local_context_size = int(context_size * initial_context_scale) |
|
for index in range(local_context_size): |
|
|
|
frame_index = (group_index * (local_context_size - overlap)) + (offset * timestep) + index |
|
|
|
if frame_index >= total_frames: |
|
frame_index %= total_frames |
|
|
|
context_group_indexes.append(frame_index) |
|
|
|
timestep_context_groups.append(context_group_indexes) |
|
|
|
all_context_indexes.append(timestep_context_groups) |
|
return all_context_indexes |
|
|
|
context_indexes = context_scheduler(context_size, overlap, step, num_frames, len(timesteps)) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=len(timesteps)) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
noise_pred_uncond_sum = torch.zeros_like(latents).to(device).to(dtype=torch.float16) |
|
noise_pred_text_sum = torch.zeros_like(latents).to(device).to(dtype=torch.float16) |
|
latent_counter = torch.zeros(num_frames).to(device).to(dtype=torch.float16) |
|
|
|
|
|
for context_group in range(len(context_indexes[i])): |
|
|
|
current_context_indexes = context_indexes[i][context_group] |
|
|
|
|
|
current_context_latents = latents[:, :, current_context_indexes, :, :] |
|
|
|
|
|
latent_model_input = torch.cat([current_context_latents] * 2) if do_classifier_free_guidance else current_context_latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
if self.controlnet != None and i < int(control_end*num_inference_steps): |
|
|
|
torch.cuda.synchronize() |
|
control_start = time.time() |
|
|
|
current_context_conditioning_frames = conditioning_frames[current_context_indexes, :, :, :] |
|
current_context_conditioning_frames = torch.cat([current_context_conditioning_frames] * 2) if do_classifier_free_guidance else current_context_conditioning_frames |
|
|
|
|
|
if guess_mode and self.do_classifier_free_guidance: |
|
|
|
control_model_input = latents |
|
control_model_input = self.scheduler.scale_model_input(control_model_input, t) |
|
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] |
|
else: |
|
control_model_input = latent_model_input |
|
controlnet_prompt_embeds = prompt_embeds |
|
controlnet_prompt_embeds = controlnet_prompt_embeds.repeat_interleave(len(current_context_indexes), dim=0) |
|
|
|
if isinstance(controlnet_keep[i], list): |
|
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] |
|
else: |
|
controlnet_cond_scale = controlnet_conditioning_scale |
|
if isinstance(controlnet_cond_scale, list): |
|
controlnet_cond_scale = controlnet_cond_scale[0] |
|
cond_scale = controlnet_cond_scale * controlnet_keep[i] |
|
|
|
|
|
control_model_input = torch.transpose(control_model_input, 1, 2) |
|
control_model_input = control_model_input.reshape( |
|
(-1, control_model_input.shape[2], control_model_input.shape[3], control_model_input.shape[4]) |
|
) |
|
|
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet( |
|
control_model_input, |
|
t, |
|
encoder_hidden_states=controlnet_prompt_embeds, |
|
controlnet_cond=current_context_conditioning_frames, |
|
conditioning_scale=cond_scale, |
|
guess_mode=guess_mode, |
|
return_dict=False, |
|
) |
|
|
|
unet_start = time.time() |
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
added_cond_kwargs=added_cond_kwargs, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
).sample |
|
|
|
else: |
|
|
|
torch.cuda.synchronize() |
|
unet_start = time.time() |
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
added_cond_kwargs=added_cond_kwargs, |
|
).sample |
|
|
|
if do_classifier_free_guidance: |
|
|
|
torch.cuda.synchronize() |
|
start_guidance_time = time.time() |
|
|
|
|
|
torch.cuda.synchronize() |
|
time_chunk_start = time.time() |
|
|
|
noise_pred_uncond, noise_pred_text = torch.chunk(noise_pred, 2, dim=0) |
|
|
|
|
|
torch.cuda.synchronize() |
|
time_batch_addition_start = time.time() |
|
|
|
|
|
noise_pred_uncond_sum[..., current_context_indexes, :, :] += noise_pred_uncond |
|
noise_pred_text_sum[..., current_context_indexes, :, :] += noise_pred_text |
|
latent_counter[current_context_indexes] += 1 |
|
|
|
|
|
self.scheduler._step_index = i |
|
|
|
|
|
if do_classifier_free_guidance: |
|
latent_counter = latent_counter.reshape(1, 1, num_frames, 1, 1) |
|
noise_pred_uncond = noise_pred_uncond_sum / latent_counter |
|
noise_pred_text = noise_pred_text_sum / latent_counter |
|
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, None) |
|
|
|
if output_type == "latent": |
|
return AnimateDiffPipelineOutput(frames=latents) |
|
|
|
|
|
if output_path is not None: |
|
output_batch_size = 2 |
|
num_digits = output_path.count('#') |
|
frame_format = output_path.replace('#' * num_digits, '{:0' + str(num_digits) + 'd}') |
|
for batch in range((num_frames + output_batch_size - 1) // output_batch_size): |
|
start_id = batch * output_batch_size |
|
end_id = min((batch + 1) * output_batch_size, num_frames) |
|
video_tensor = self.decode_latents(latents[:, :, start_id:end_id, :, :]) |
|
video = tensor2vid(video_tensor, self.image_processor, output_type=output_type) |
|
for f_id, frame in enumerate(video[0]): |
|
frame.save(frame_format.format(start_id + f_id)) |
|
return output_path |
|
|
|
|
|
video_tensor = self.decode_latents(latents) |
|
|
|
if output_type == "pt": |
|
video = video_tensor |
|
else: |
|
video = tensor2vid(video_tensor, self.image_processor, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (video,) |
|
|
|
return AnimateDiffPipelineOutput(frames=video) |