Update pipeline.py
Browse files- pipeline.py +0 -7
pipeline.py
CHANGED
@@ -1080,7 +1080,6 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
|
1080 |
context_group_indexes.append(frame_index)
|
1081 |
# Add the group's indexes to the timestep's list
|
1082 |
timestep_context_groups.append(context_group_indexes)
|
1083 |
-
print("context_group_indexes", context_group_indexes)
|
1084 |
# Add the timestep's context groups to the overall list
|
1085 |
all_context_indexes.append(timestep_context_groups)
|
1086 |
return all_context_indexes
|
@@ -1129,9 +1128,6 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
|
1129 |
# set the step index to the current batch
|
1130 |
self.scheduler._step_index = i
|
1131 |
|
1132 |
-
print("latent_counter", latent_counter)
|
1133 |
-
print("current_context_indexes", current_context_indexes)
|
1134 |
-
|
1135 |
# perform guidance
|
1136 |
if do_classifier_free_guidance:
|
1137 |
latent_counter = latent_counter.reshape(1, 1, num_frames, 1, 1)
|
@@ -1140,9 +1136,6 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
|
1140 |
|
1141 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1142 |
|
1143 |
-
# print min and max
|
1144 |
-
print("noise_pred: ", noise_pred.min(), noise_pred.max())
|
1145 |
-
|
1146 |
# compute the previous noisy sample x_t -> x_t-1
|
1147 |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
1148 |
|
|
|
1080 |
context_group_indexes.append(frame_index)
|
1081 |
# Add the group's indexes to the timestep's list
|
1082 |
timestep_context_groups.append(context_group_indexes)
|
|
|
1083 |
# Add the timestep's context groups to the overall list
|
1084 |
all_context_indexes.append(timestep_context_groups)
|
1085 |
return all_context_indexes
|
|
|
1128 |
# set the step index to the current batch
|
1129 |
self.scheduler._step_index = i
|
1130 |
|
|
|
|
|
|
|
1131 |
# perform guidance
|
1132 |
if do_classifier_free_guidance:
|
1133 |
latent_counter = latent_counter.reshape(1, 1, num_frames, 1, 1)
|
|
|
1136 |
|
1137 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1138 |
|
|
|
|
|
|
|
1139 |
# compute the previous noisy sample x_t -> x_t-1
|
1140 |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
1141 |
|