Initial commit
Browse files- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/data +17 -17
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 776.43 +/- 157.88
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6424cad10e5bc1bd28262f8319620a6b4aface5e32b6bf1718027eff8c96ba6b
|
3 |
+
size 129256
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
@@ -64,7 +64,7 @@
|
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
-
"start_time":
|
68 |
"learning_rate": 0.00096,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
@@ -73,7 +73,7 @@
|
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
-
":serialized:": "
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -81,7 +81,7 @@
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
-
":serialized:": "
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
@@ -89,7 +89,7 @@
|
|
89 |
"_current_progress_remaining": 0.0,
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
-
":serialized:": "
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f33763d53a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f33763d5430>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f33763d54c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f33763d5550>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f33763d55e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f33763d5670>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f33763d5700>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f33763d5790>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f33763d5820>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f33763d58b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f33763d5940>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f33763d59d0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f33763d05d0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
+
"start_time": 1677739294088389494,
|
68 |
"learning_rate": 0.00096,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
|
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOv1bL9wBAnAkEvTPUTakr/mLLc+6VEMPyp18b6ximC+oVJ1v0TE5b9aIga/KQmiv5rJej94Zi6+1GuLP2Dcl77Q6Zy/e1E2Psp+GT8M2wK/5RScP4E3Er+EodQ93WvMvZwagr8ztAk/vwitPivFDT8ae6o9ZG4bP2J8RT4KBYe/3g0YwNLvxL6i7Ny/NPw5P8ipAr6Z67a83GN5v6RHBb9yDoM/0m+3vusCjD6tQZW+ryuJv9YdO78oCuW//RLEvnU6pT8U6LI+KLfYvrv2EsAz3Hs/M7QJP78IrT52Iue/lhHPvo8vCr+b7EE/r41GvzKcLT/C8wI9aruxPrU6Wzz51vC/hNO/vXB+ob+ErWQ/UcpUP4MW7D6+kKU+tim0vqH9/769BpM/s3sIP5gBwT6HDaE/H50vPiuRfjym3gu+nBqCv7f17b+/CK0+K8UNP0+a+b47zs498IEQP0i8pz8QHUS+VPYMwOPSeb/AD9Q+sgwSuw6IVkA78Dy/129cP6NZmj9xzTa8mGkSP048Ez8SXhtAKNgrv5hdVr95IZO/8uSsPt70pz+rZ6893hlMv5wagr8ztAk/vwitPivFDT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACBMpo2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0kOivQAAAAB1S92/AAAAADCWQT0AAAAANRn6PwAAAACkKOk8AAAAAMdS7j8AAAAAEqcevQAAAACcHfS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFT82tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCSjkD0AAAAAX2buvwAAAABy6hS9AAAAAN3c5j8AAAAAB0iFPAAAAADAFe0/AAAAAJua4zwAAAAAb5PlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABqKhbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAcImS9AAAAAOK56r8AAAAAb790vQAAAABkJe0/AAAAABHZ2T0AAAAAVFroPwAAAAC/Eww+AAAAAEaA878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/M4y2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACArBYAvQAAAABwk+6/AAAAAEDL+70AAAAAiZbcPwAAAAA636m9AAAAAOzT2z8AAAAA9Y4IPAAAAAClQfG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
|
|
89 |
"_current_progress_remaining": 0.0,
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIml5Mg2ZReMAWyUTegDjAF0lEdAsEjiLyc0+HV9lChoBkdAizf1LBbfQGgHTegDaAhHQLBMSUQkHD91fZQoaAZHQIo4V6w+t8xoB03oA2gIR0CwTTfQ4S6EdX2UKGgGR0CJOKkMTewcaAdN6ANoCEdAsE7K9rXUY3V9lChoBkdAiiKvcBU70WgHTegDaAhHQLBQOmyxA0N1fZQoaAZHQI2nGitaIN5oB03oA2gIR0CwVF4IKMNudX2UKGgGR0Aqvj/dZaFFaAdLYmgIR0CwVX31BdD6dX2UKGgGR0CISWsjFAE/aAdN6ANoCEdAsFXUzAN5MXV9lChoBkdAjS3OsLfDUGgHTegDaAhHQLBX78l5WzZ1fZQoaAZHQIjNrypaRp1oB03oA2gIR0CwWV5q7AcldX2UKGgGR0CK3dH6MzdlaAdN6ANoCEdAsF185xR2sHV9lChoBkdAjA3u1v2oN2gHTegDaAhHQLBdtYvWYnh1fZQoaAZHQIk5PZoPCl9oB03oA2gIR0CwX0m29crzdX2UKGgGR0CJ/F3A2ycDaAdN6ANoCEdAsGC0UqQRw3V9lChoBkdAiZqT7MxGlWgHTegDaAhHQLBmpqYZ2p11fZQoaAZHQIav6Zpi7TVoB03oA2gIR0CwZt5rULDydX2UKGgGR0CK1228Zk08aAdN6ANoCEdAsGhwYVIqb3V9lChoBkdAib1/S6UaAGgHTegDaAhHQLBp5jZL7Gh1fZQoaAZHQIi3IddVvMtoB03oA2gIR0CwbgdCZ4OddX2UKGgGR0CIKWEB8x9HaAdN6ANoCEdAsG5AsTWXknV9lChoBkdAi5vJ3os7MmgHTegDaAhHQLBvxOhCdBl1fZQoaAZHQIm63+MqBmRoB03oA2gIR0CwcXMg2ZRbdX2UKGgGR0CIzMuOCGvfaAdN6ANoCEdAsHcoWweNk3V9lChoBkdAiUI5xiobXGgHTegDaAhHQLB3XrIYFaB1fZQoaAZHQIbq8vh60IFoB03oA2gIR0CwePr1uivgdX2UKGgGR0CKeOI0IkZ8aAdN6ANoCEdAsHproRqXW3V9lChoBkdAixxK28Zk1GgHTegDaAhHQLB+jgRsdkt1fZQoaAZHQInPe4uscQ1oB03oA2gIR0CwfsW96C17dX2UKGgGR0CJ84ttALRbaAdN6ANoCEdAsIBwFV1fV3V9lChoBkdAiibrwWnCO2gHTegDaAhHQLCCjg6EJ0J1fZQoaAZHQIeArjghr31oB03oA2gIR0Cwh6uRcNYsdX2UKGgGR0CKfJUF0PpZaAdN6ANoCEdAsIflxjriVHV9lChoBkdAi5qm6GxlhGgHTegDaAhHQLCJcgJC0F91fZQoaAZHQIks24Ajps5oB03oA2gIR0Cwit9bxEv1dX2UKGgGR0CKh0nn+yZ8aAdN6ANoCEdAsI7q7mMfinV9lChoBkdAigeouwosqmgHTegDaAhHQLCPJG96C191fZQoaAZHQIrccN4JNTNoB03oA2gIR0CwkVFNHpbEdX2UKGgGR0COEOFQEZBLaAdN6ANoCEdAsJOJfnfVJHV9lChoBkdAiA+EQGwA2mgHTegDaAhHQLCYHUF0PpZ1fZQoaAZHQIYrg3rD631oB03oA2gIR0CwmFXNLUTddX2UKGgGR0CG4An4wh4daAdN6ANoCEdAsJnhvDP4VXV9lChoBkdAiLtfyf+S82gHTegDaAhHQLCbTVPepGZ1fZQoaAZHQIZZWH1vl2hoB03oA2gIR0Cwn8AuZkTYdX2UKGgGR0CIQGLronrqaAdN6ANoCEdAsKAXEETxonV9lChoBkdAi24J3os7MmgHTegDaAhHQLCieKe05U91fZQoaAZHQIqcWt0V8CxoB03oA2gIR0CwpH+M+/xldX2UKGgGR0CIg0f+S8raaAdN6ANoCEdAsKiXGEPDpHV9lChoBkdAiwacVQAMlWgHTegDaAhHQLCoz2QGOdZ1fZQoaAZHQIZi5c5bQkZoB03oA2gIR0Cwql1RpDeCdX2UKGgGR0CHjUg13t8eaAdN6ANoCEdAsKvQGjbi63V9lChoBkdAizwzjm0VrWgHTegDaAhHQLCwzfXf6451fZQoaAZHQIvlNcjZ+QVoB03oA2gIR0CwsSWU0Nz9dX2UKGgGR0CHNud92HLzaAdN6ANoCEdAsLOYbADaG3V9lChoBkdAiZw0Z3s5XGgHTegDaAhHQLC1CrdnCfp1fZQoaAZHQId+Gc8TzupoB03oA2gIR0CwuS4a1kUcdX2UKGgGR0CIk2P2f02+aAdN6ANoCEdAsLlnwBo243V9lChoBkdAiYR7CrLhaWgHTegDaAhHQLC6/wBYFJR1fZQoaAZHQIuLd2LYPG1oB03oA2gIR0CwvHFktmL+dX2UKGgGR0CIzeCUX531aAdN6ANoCEdAsMILEETxonV9lChoBkdAh+/ODzyz5WgHTegDaAhHQLDCZP8AJcB1fZQoaAZHQId6QYrJ8v5oB03oA2gIR0CwxCAHNX5ndX2UKGgGR0CKa6YfnwG4aAdN6ANoCEdAsMWG+N96TnV9lChoBkdAhyeuB19v0mgHTegDaAhHQLDJoEjPfKp1fZQoaAZHQIml/Rw6ySpoB03oA2gIR0CwydbWNFSbdX2UKGgGR0CFg2MtsenyaAdN6ANoCEdAsMthEc81XXV9lChoBkdAhnZ5D7ZWaWgHTegDaAhHQLDM0vOQhfV1fZQoaAZHQINWSQvHtF9oB03oA2gIR0Cw0si04R29dX2UKGgGR0CDoSn752yLaAdN6ANoCEdAsNL/w8W9DnV9lChoBkdAhKFBaTwDvGgHTegDaAhHQLDUldQwbl11fZQoaAZHQIkCSA+Y+jdoB03oA2gIR0Cw1ftNzr/sdX2UKGgGR0CI5VB8hLXdaAdN6ANoCEdAsNoeiwjdHnV9lChoBkdAhUBoldC3PWgHTegDaAhHQLDaWZCfHxV1fZQoaAZHQIs/Tmjj7yhoB03oA2gIR0Cw2+Y9TxXodX2UKGgGR0CHMlFCswL3aAdN6ANoCEdAsN3bHBDXv3V9lChoBkdAiVW+vyLAHmgHTegDaAhHQLDjO3Fkxyp1fZQoaAZHQINHIJRfnfVoB03oA2gIR0Cw43Fmvnr6dX2UKGgGR0CHUZLns9jgaAdN6ANoCEdAsOTw9cKPXHV9lChoBkdAhoVLns9jgGgHTegDaAhHQLDmWclgMMJ1fZQoaAZHQIFgxIDoyKxoB03oA2gIR0Cw6nDK9wm3dX2UKGgGR0CH2L1oQFs6aAdN6ANoCEdAsOqofQrtmnV9lChoBkdAieJ9vbXYlWgHTegDaAhHQLDsjg9eQdV1fZQoaAZHQIoAvPszEaVoB03oA2gIR0Cw7qt52QnydX2UKGgGR0B8QaM4tHx0aAdN6ANoCEdAsPOPzundf3V9lChoBkdAjbqy1E3KjmgHTegDaAhHQLDzx+V1Oj91fZQoaAZHQInL5xrBTGZoB03oA2gIR0Cw9Vrbg0j1dX2UKGgGR0CHzgVeKKpDaAdN6ANoCEdAsPbLhYNiIHV9lChoBkdAii5JCrtE5WgHTegDaAhHQLD62oGIKtx1fZQoaAZHQITJRY7q6e5oB03oA2gIR0Cw+y5GvwEydX2UKGgGR0CI35rLQokSaAdN6ANoCEdAsP1zURWcSXV9lChoBkdAi5/0+LWI42gHTegDaAhHQLD/rHnlnyx1fZQoaAZHQIgSnBzmwJRoB03oA2gIR0CxA9t25hBrdX2UKGgGR0CI9JtsvZh8aAdN6ANoCEdAsQQVLBbfQHV9lChoBkdAiNQW0zCUHWgHTegDaAhHQLEFocEvCdl1fZQoaAZHQIy/vG2kSEloB03oA2gIR0CxBww/PgNxdX2UKGgGR0B+oOHck+otaAdN6ANoCEdAsQukBEKE4HV9lChoBkdAiLv0PQOWjWgHTegDaAhHQLEL9HDrJKd1fZQoaAZHQIb2HBnBciZoB03oA2gIR0CxDl0Pxx1gdX2UKGgGR0CIYHENOM2naAdN6ANoCEdAsRA8DoyKvXV9lChoBkdAiwl3ueBg/mgHTegDaAhHQLEUTGo73f11fZQoaAZHQIpocFbFCLNoB03oA2gIR0CxFIGxIJ7cdWUu"
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56190
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f9d21610d84ca08893d8e82d5df4caec6b91402ea748bf50d30073c747b6819
|
3 |
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56958
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17f5ab5a932b9386b8b88c5d278c26bfdecddaf028ece9e92f22ca9034eabc4f
|
3 |
size 56958
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efc8f281040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efc8f2810d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efc8f281160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efc8f2811f0>", "_build": "<function ActorCriticPolicy._build at 0x7efc8f281280>", "forward": "<function ActorCriticPolicy.forward at 0x7efc8f281310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efc8f2813a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efc8f281430>", "_predict": "<function ActorCriticPolicy._predict at 0x7efc8f2814c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efc8f281550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efc8f2815e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efc8f281670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efc8f27f180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677572418658975146, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHQPEb+bZgXAPmdVwCBKrb91eIy8U9LUP0emHsDOUkw/kpQ0wK1+AD+5EmS/mEpJPQ+khj+FRT28uyI7PyQoTb4t4QTACXrRPauASb/kKXG/bbsHQKDltLwQWkm/bZiru0Z/YD9uEBs/WdAFP8Cygr9gEEE8/M4IQEQ/AMC9Vu+/r4q8v29p3L/5mlo/n9adP6q8LsBC4Ec/pF5kvyBhKLwRAJY/SG4rwFEArr+Z+DlAdVPJvpMT078qKpK+L0lwwG89EEDIU7o7XbtQv6TJi7819pG/p1HTv1nQBT/AsoK/z0GyP6tnhD6pABY/pXzdP4OVLr+xx+o9gylGP7873L95a4o+igHOvwGCB0CTixw/76moP7SrCMBkEew+tYDKP/2BJj79+jrAYUQhPzYugL3rfHO/zf/4wEtjJUAK5Pm9NfaRv24QGz9Z0AU/BLd6PxmDXj8WD9s/R2Y5v28QAT49VV6/de9nP115Sz9L03+/taM2P3U6072ttAxASTpEv/KS4L4304U/+Xo5v/kyJD/KLUO/b/JuP4bDUj84yJk859JDvxt2dT4DP0I/8KGmPkZ/YD9uEBs/WdAFPwS3ej+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABK9KU1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4g7dvAAAAABLm9+/AAAAAM/Y6T0AAAAAkHv1PwAAAAAXkGW8AAAAAA5l3D8AAAAAJlKZPQAAAADJddq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxKC0swAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgM1k0j0AAAAAKj/uvwAAAACEOqs9AAAAADAQ8z8AAAAA3ZF5vQAAAABFAek/AAAAAEzklr0AAAAA0fHmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANjwiTQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA88w4+AAAAABnk378AAAAAeH/xPQAAAAAWSPY/AAAAAPJ41z0AAAAAhdLYPwAAAACTUp49AAAAAO0I8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJItO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAzwfMPQAAAABT2eS/AAAAAAQVxr0AAAAAu7/1PwAAAAC7+7e7AAAAAOHY+z8AAAAAxEqUPQAAAAD20fu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJtf3VhCtzWMAWyUTegDjAF0lEdAqdSJQ1rIo3V9lChoBkdAffE/ACW/rWgHTegDaAhHQKnWggZjx1B1fZQoaAZHQJnQ7hl18stoB03oA2gIR0Cp2SU8NhE0dX2UKGgGR0CbjhExIre7aAdN6ANoCEdAqdsivHLidnV9lChoBkdAmdCHAymALGgHTegDaAhHQKngMunuRcN1fZQoaAZHQJtvJL8JlatoB03oA2gIR0Cp4xBAGB4EdX2UKGgGR0CeSVs/Y8MeaAdN6ANoCEdAqec++bmU4nV9lChoBkdAmrH3ocJdB2gHTegDaAhHQKnqVEYO2Ap1fZQoaAZHQJ1WbAqNIbxoB03oA2gIR0Cp71/CAMDwdX2UKGgGR0Cb8EaN+9amaAdN6ANoCEdAqfFhNj9XLnV9lChoBkdAnEUL4SHuZ2gHTegDaAhHQKn0GID5j6N1fZQoaAZHQJzt0LpiZv1oB03oA2gIR0Cp9ioMz/IbdX2UKGgGR0CbeH4wh4dIaAdN6ANoCEdAqftZa3ZwoHV9lChoBkdAnPG6MvRJE2gHTegDaAhHQKn9WXk5p8F1fZQoaAZHQJSWWKsMiKRoB03oA2gIR0CqAPS9ugpSdX2UKGgGR0CR0nV3Ux20aAdN6ANoCEdAqgQcMI/qxHV9lChoBkdAkHrn9R77bmgHTegDaAhHQKoK1SzgMtt1fZQoaAZHQI3B0WCVbA1oB03oA2gIR0CqDM3+2mYTdX2UKGgGR0CDrGhQFcIJaAdN6ANoCEdAqg980elsQHV9lChoBkdAjy3dMbm2cGgHTegDaAhHQKoReywfQrt1fZQoaAZHQIzCpq/M4cZoB03oA2gIR0CqFp0Fr2xqdX2UKGgGR0CQqzJgssg/aAdN6ANoCEdAqhiWNNrTIHV9lChoBkdAis6TKLbYb2gHTegDaAhHQKobMfGuLaV1fZQoaAZHQIV6gn6VMVVoB03oA2gIR0CqHaohQm/ndX2UKGgGR0CK7ztfoicHaAdN6ANoCEdAqiWb59E1EXV9lChoBkdAgZWtnPE872gHTegDaAhHQKon+85jpcJ1fZQoaAZHQIUEztJFspJoB03oA2gIR0CqKrx6v7m/dX2UKGgGR0CBYuOiFj/daAdN6ANoCEdAqizJG2Cul3V9lChoBkdAf7Eovi97GGgHTegDaAhHQKoyG2nbZe11fZQoaAZHQIRpNnCfpUxoB03oA2gIR0CqNC9PUKAsdX2UKGgGR0CBBWYAKfFraAdN6ANoCEdAqjbrYf4h2XV9lChoBkdAgNeBOP/7zmgHTegDaAhHQKo4/9c8klh1fZQoaAZHQIf1A1m8M/hoB03oA2gIR0CqQAgsK9f1dX2UKGgGR0CB8HrylN1yaAdN6ANoCEdAqkMp35eqrHV9lChoBkdAdNzOYYzi0mgHTegDaAhHQKpGcf/WDpV1fZQoaAZHQIh/K7qY7aJoB03oA2gIR0CqSGlHz6JqdX2UKGgGR0B9JERTS9dvaAdN6ANoCEdAqk2EeXAuZnV9lChoBkdAfFrBTGYKIGgHTegDaAhHQKpPfk0aZQZ1fZQoaAZHQJBLLz+WGAVoB03oA2gIR0CqUi5kCmuUdX2UKGgGR0CCfhar3j+8aAdN6ANoCEdAqlRBNqQA/HV9lChoBkdAhqgTtCzC12gHTegDaAhHQKpZtYYixFB1fZQoaAZHQIitGMyad+ZoB03oA2gIR0CqXJnE/B3zdX2UKGgGR0CNSknBtUGWaAdN6ANoCEdAqmDHh60IC3V9lChoBkdAjqWQGW2PUGgHTegDaAhHQKpjqzyjHn51fZQoaAZHQIsNQa5wwTNoB03oA2gIR0CqaMnPE87qdX2UKGgGR0CQtOEf1YhdaAdN6ANoCEdAqmrE7U5MlHV9lChoBkdAlJhuUUwi7mgHTegDaAhHQKpteeDFqBV1fZQoaAZHQJFV3i6xxDNoB03oA2gIR0Cqb3yPEKmbdX2UKGgGR0CbkqLaVUuMaAdN6ANoCEdAqnR38n/kvXV9lChoBkdAmO4B+z+m32gHTegDaAhHQKp2aSowVTJ1fZQoaAZHQJ0ERxkupS9oB03oA2gIR0Cqeg2bPQfIdX2UKGgGR0CZ5mrcTJyRaAdN6ANoCEdAqn0ehM8HOnV9lChoBkdAnlsbHuJDV2gHTegDaAhHQKqDp9l2/zt1fZQoaAZHQJrNOsRxtHhoB03oA2gIR0CqhZ4dQwbmdX2UKGgGR0Cc6GsI3R5UaAdN6ANoCEdAqog5BomG/XV9lChoBkdAmz0FOfukUWgHTegDaAhHQKqKOgkka/B1fZQoaAZHQIfVUy+HrQhoB03oA2gIR0Cqj0bXxvvSdX2UKGgGR0Ca5Td56dDqaAdN6ANoCEdAqpE2PaL4vnV9lChoBkdAnC9E5ZKWcGgHTegDaAhHQKqT1t9hJAd1fZQoaAZHQJhz/XlKbrloB03oA2gIR0Cqlh07r9l3dX2UKGgGR0CDTHMajvd/aAdN6ANoCEdAqp38mWt2cXV9lChoBkdAlHEbZzxPPGgHTegDaAhHQKqgmX531SR1fZQoaAZHQJwvWz8gpz9oB03oA2gIR0Cqo0gRsdkrdX2UKGgGR0CXR1Udq+JxaAdN6ANoCEdAqqVOYD1XeXV9lChoBkdAlkfDMmnfmGgHTegDaAhHQKqqYJQ+EAZ1fZQoaAZHQJcV6B+Wnj1oB03oA2gIR0CqrEWYfGModX2UKGgGR0CdwiDtw71aaAdN6ANoCEdAqq7deWv8qHV9lChoBkdAldl5vLowEmgHTegDaAhHQKqw4BFNL151fZQoaAZHQJlQHytmthdoB03oA2gIR0CqtxDFAE+xdX2UKGgGR0CQjpl18stkaAdN6ANoCEdAqrpQPkJa7nV9lChoBkdAkrXuEVWS2mgHTegDaAhHQKq+UTrVvuR1fZQoaAZHQJcDscvM8oxoB03oA2gIR0CqwFvxpcoqdX2UKGgGR0CTEoKbKA8TaAdN6ANoCEdAqsVcdxQzlHV9lChoBkdAen8/zreImGgHTegDaAhHQKrHTVTaTOh1fZQoaAZHQJXFaLm6oVFoB03oA2gIR0Cqygidz4lAdX2UKGgGR0CSNwTTvy9VaAdN6ANoCEdAqswSE+Pik3V9lChoBkdAf3Vo2XLNfWgHTegDaAhHQKrRGHj6vaF1fZQoaAZHQJfET8YQ8OloB03oA2gIR0Cq05u9vjwQdX2UKGgGR0B55MvZh8YyaAdN6ANoCEdAqteW3pfQbHV9lChoBkdAly1sophF3WgHTegDaAhHQKrauOlwcYJ1fZQoaAZHQJhQOyLQ5WBoB03oA2gIR0Cq4ELYGt6pdX2UKGgGR0CWKCQMx46faAdN6ANoCEdAquI6WzF+/nV9lChoBkdAlsq4mXw9aGgHTegDaAhHQKrk67NB4Ux1fZQoaAZHQJhGztkWhytoB03oA2gIR0Cq5vZ62OQydX2UKGgGR0CQJrQSSNfgaAdN6ANoCEdAquw8Djin53V9lChoBkdAmeLG9tdiUmgHTegDaAhHQKruOabWmP51fZQoaAZHQHUyoG+sYEZoB03oA2gIR0Cq8WSQgcLjdX2UKGgGR0CWDg4M4LkTaAdN6ANoCEdAqvRlbRneznV9lChoBkdAk0jtfLLZBmgHTegDaAhHQKr71eF+NLl1fZQoaAZHQJhigahpQDVoB03oA2gIR0Cq/c/ZuhsZdX2UKGgGR0CYC6zMzMzNaAdN6ANoCEdAqwCEUGmk33V9lChoBkdAm8Zm21D0DmgHTegDaAhHQKsCm2pAD7t1fZQoaAZHQI72ABNmDlJoB03oA2gIR0CrB9kvTPSldX2UKGgGR0Cbq1HlfZ27aAdN6ANoCEdAqwniAz544nV9lChoBkdAfecVbRnezmgHTegDaAhHQKsMixFiKBN1fZQoaAZHQJj6ZgVoHs1oB03oA2gIR0CrDqFTNt65dX2UKGgGR0CbPsjENvwWaAdN6ANoCEdAqxZFdcB2fXV9lChoBkdAm6jYKtxMnWgHTegDaAhHQKsZIlQ/HHZ1fZQoaAZHQJlNrVnVXmxoB03oA2gIR0CrG7/PX05EdX2UKGgGR0CXnnrqdH2AaAdN6ANoCEdAqx3E2BJ7LXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f33763d53a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f33763d5430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f33763d54c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f33763d5550>", "_build": "<function ActorCriticPolicy._build at 0x7f33763d55e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f33763d5670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f33763d5700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f33763d5790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f33763d5820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f33763d58b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f33763d5940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f33763d59d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f33763d05d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677739294088389494, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOv1bL9wBAnAkEvTPUTakr/mLLc+6VEMPyp18b6ximC+oVJ1v0TE5b9aIga/KQmiv5rJej94Zi6+1GuLP2Dcl77Q6Zy/e1E2Psp+GT8M2wK/5RScP4E3Er+EodQ93WvMvZwagr8ztAk/vwitPivFDT8ae6o9ZG4bP2J8RT4KBYe/3g0YwNLvxL6i7Ny/NPw5P8ipAr6Z67a83GN5v6RHBb9yDoM/0m+3vusCjD6tQZW+ryuJv9YdO78oCuW//RLEvnU6pT8U6LI+KLfYvrv2EsAz3Hs/M7QJP78IrT52Iue/lhHPvo8vCr+b7EE/r41GvzKcLT/C8wI9aruxPrU6Wzz51vC/hNO/vXB+ob+ErWQ/UcpUP4MW7D6+kKU+tim0vqH9/769BpM/s3sIP5gBwT6HDaE/H50vPiuRfjym3gu+nBqCv7f17b+/CK0+K8UNP0+a+b47zs498IEQP0i8pz8QHUS+VPYMwOPSeb/AD9Q+sgwSuw6IVkA78Dy/129cP6NZmj9xzTa8mGkSP048Ez8SXhtAKNgrv5hdVr95IZO/8uSsPt70pz+rZ6893hlMv5wagr8ztAk/vwitPivFDT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACBMpo2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0kOivQAAAAB1S92/AAAAADCWQT0AAAAANRn6PwAAAACkKOk8AAAAAMdS7j8AAAAAEqcevQAAAACcHfS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFT82tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCSjkD0AAAAAX2buvwAAAABy6hS9AAAAAN3c5j8AAAAAB0iFPAAAAADAFe0/AAAAAJua4zwAAAAAb5PlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABqKhbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAcImS9AAAAAOK56r8AAAAAb790vQAAAABkJe0/AAAAABHZ2T0AAAAAVFroPwAAAAC/Eww+AAAAAEaA878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/M4y2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACArBYAvQAAAABwk+6/AAAAAEDL+70AAAAAiZbcPwAAAAA636m9AAAAAOzT2z8AAAAA9Y4IPAAAAAClQfG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIml5Mg2ZReMAWyUTegDjAF0lEdAsEjiLyc0+HV9lChoBkdAizf1LBbfQGgHTegDaAhHQLBMSUQkHD91fZQoaAZHQIo4V6w+t8xoB03oA2gIR0CwTTfQ4S6EdX2UKGgGR0CJOKkMTewcaAdN6ANoCEdAsE7K9rXUY3V9lChoBkdAiiKvcBU70WgHTegDaAhHQLBQOmyxA0N1fZQoaAZHQI2nGitaIN5oB03oA2gIR0CwVF4IKMNudX2UKGgGR0Aqvj/dZaFFaAdLYmgIR0CwVX31BdD6dX2UKGgGR0CISWsjFAE/aAdN6ANoCEdAsFXUzAN5MXV9lChoBkdAjS3OsLfDUGgHTegDaAhHQLBX78l5WzZ1fZQoaAZHQIjNrypaRp1oB03oA2gIR0CwWV5q7AcldX2UKGgGR0CK3dH6MzdlaAdN6ANoCEdAsF185xR2sHV9lChoBkdAjA3u1v2oN2gHTegDaAhHQLBdtYvWYnh1fZQoaAZHQIk5PZoPCl9oB03oA2gIR0CwX0m29crzdX2UKGgGR0CJ/F3A2ycDaAdN6ANoCEdAsGC0UqQRw3V9lChoBkdAiZqT7MxGlWgHTegDaAhHQLBmpqYZ2p11fZQoaAZHQIav6Zpi7TVoB03oA2gIR0CwZt5rULDydX2UKGgGR0CK1228Zk08aAdN6ANoCEdAsGhwYVIqb3V9lChoBkdAib1/S6UaAGgHTegDaAhHQLBp5jZL7Gh1fZQoaAZHQIi3IddVvMtoB03oA2gIR0CwbgdCZ4OddX2UKGgGR0CIKWEB8x9HaAdN6ANoCEdAsG5AsTWXknV9lChoBkdAi5vJ3os7MmgHTegDaAhHQLBvxOhCdBl1fZQoaAZHQIm63+MqBmRoB03oA2gIR0CwcXMg2ZRbdX2UKGgGR0CIzMuOCGvfaAdN6ANoCEdAsHcoWweNk3V9lChoBkdAiUI5xiobXGgHTegDaAhHQLB3XrIYFaB1fZQoaAZHQIbq8vh60IFoB03oA2gIR0CwePr1uivgdX2UKGgGR0CKeOI0IkZ8aAdN6ANoCEdAsHproRqXW3V9lChoBkdAixxK28Zk1GgHTegDaAhHQLB+jgRsdkt1fZQoaAZHQInPe4uscQ1oB03oA2gIR0CwfsW96C17dX2UKGgGR0CJ84ttALRbaAdN6ANoCEdAsIBwFV1fV3V9lChoBkdAiibrwWnCO2gHTegDaAhHQLCCjg6EJ0J1fZQoaAZHQIeArjghr31oB03oA2gIR0Cwh6uRcNYsdX2UKGgGR0CKfJUF0PpZaAdN6ANoCEdAsIflxjriVHV9lChoBkdAi5qm6GxlhGgHTegDaAhHQLCJcgJC0F91fZQoaAZHQIks24Ajps5oB03oA2gIR0Cwit9bxEv1dX2UKGgGR0CKh0nn+yZ8aAdN6ANoCEdAsI7q7mMfinV9lChoBkdAigeouwosqmgHTegDaAhHQLCPJG96C191fZQoaAZHQIrccN4JNTNoB03oA2gIR0CwkVFNHpbEdX2UKGgGR0COEOFQEZBLaAdN6ANoCEdAsJOJfnfVJHV9lChoBkdAiA+EQGwA2mgHTegDaAhHQLCYHUF0PpZ1fZQoaAZHQIYrg3rD631oB03oA2gIR0CwmFXNLUTddX2UKGgGR0CG4An4wh4daAdN6ANoCEdAsJnhvDP4VXV9lChoBkdAiLtfyf+S82gHTegDaAhHQLCbTVPepGZ1fZQoaAZHQIZZWH1vl2hoB03oA2gIR0Cwn8AuZkTYdX2UKGgGR0CIQGLronrqaAdN6ANoCEdAsKAXEETxonV9lChoBkdAi24J3os7MmgHTegDaAhHQLCieKe05U91fZQoaAZHQIqcWt0V8CxoB03oA2gIR0CwpH+M+/xldX2UKGgGR0CIg0f+S8raaAdN6ANoCEdAsKiXGEPDpHV9lChoBkdAiwacVQAMlWgHTegDaAhHQLCoz2QGOdZ1fZQoaAZHQIZi5c5bQkZoB03oA2gIR0Cwql1RpDeCdX2UKGgGR0CHjUg13t8eaAdN6ANoCEdAsKvQGjbi63V9lChoBkdAizwzjm0VrWgHTegDaAhHQLCwzfXf6451fZQoaAZHQIvlNcjZ+QVoB03oA2gIR0CwsSWU0Nz9dX2UKGgGR0CHNud92HLzaAdN6ANoCEdAsLOYbADaG3V9lChoBkdAiZw0Z3s5XGgHTegDaAhHQLC1CrdnCfp1fZQoaAZHQId+Gc8TzupoB03oA2gIR0CwuS4a1kUcdX2UKGgGR0CIk2P2f02+aAdN6ANoCEdAsLlnwBo243V9lChoBkdAiYR7CrLhaWgHTegDaAhHQLC6/wBYFJR1fZQoaAZHQIuLd2LYPG1oB03oA2gIR0CwvHFktmL+dX2UKGgGR0CIzeCUX531aAdN6ANoCEdAsMILEETxonV9lChoBkdAh+/ODzyz5WgHTegDaAhHQLDCZP8AJcB1fZQoaAZHQId6QYrJ8v5oB03oA2gIR0CwxCAHNX5ndX2UKGgGR0CKa6YfnwG4aAdN6ANoCEdAsMWG+N96TnV9lChoBkdAhyeuB19v0mgHTegDaAhHQLDJoEjPfKp1fZQoaAZHQIml/Rw6ySpoB03oA2gIR0CwydbWNFSbdX2UKGgGR0CFg2MtsenyaAdN6ANoCEdAsMthEc81XXV9lChoBkdAhnZ5D7ZWaWgHTegDaAhHQLDM0vOQhfV1fZQoaAZHQINWSQvHtF9oB03oA2gIR0Cw0si04R29dX2UKGgGR0CDoSn752yLaAdN6ANoCEdAsNL/w8W9DnV9lChoBkdAhKFBaTwDvGgHTegDaAhHQLDUldQwbl11fZQoaAZHQIkCSA+Y+jdoB03oA2gIR0Cw1ftNzr/sdX2UKGgGR0CI5VB8hLXdaAdN6ANoCEdAsNoeiwjdHnV9lChoBkdAhUBoldC3PWgHTegDaAhHQLDaWZCfHxV1fZQoaAZHQIs/Tmjj7yhoB03oA2gIR0Cw2+Y9TxXodX2UKGgGR0CHMlFCswL3aAdN6ANoCEdAsN3bHBDXv3V9lChoBkdAiVW+vyLAHmgHTegDaAhHQLDjO3Fkxyp1fZQoaAZHQINHIJRfnfVoB03oA2gIR0Cw43Fmvnr6dX2UKGgGR0CHUZLns9jgaAdN6ANoCEdAsOTw9cKPXHV9lChoBkdAhoVLns9jgGgHTegDaAhHQLDmWclgMMJ1fZQoaAZHQIFgxIDoyKxoB03oA2gIR0Cw6nDK9wm3dX2UKGgGR0CH2L1oQFs6aAdN6ANoCEdAsOqofQrtmnV9lChoBkdAieJ9vbXYlWgHTegDaAhHQLDsjg9eQdV1fZQoaAZHQIoAvPszEaVoB03oA2gIR0Cw7qt52QnydX2UKGgGR0B8QaM4tHx0aAdN6ANoCEdAsPOPzundf3V9lChoBkdAjbqy1E3KjmgHTegDaAhHQLDzx+V1Oj91fZQoaAZHQInL5xrBTGZoB03oA2gIR0Cw9Vrbg0j1dX2UKGgGR0CHzgVeKKpDaAdN6ANoCEdAsPbLhYNiIHV9lChoBkdAii5JCrtE5WgHTegDaAhHQLD62oGIKtx1fZQoaAZHQITJRY7q6e5oB03oA2gIR0Cw+y5GvwEydX2UKGgGR0CI35rLQokSaAdN6ANoCEdAsP1zURWcSXV9lChoBkdAi5/0+LWI42gHTegDaAhHQLD/rHnlnyx1fZQoaAZHQIgSnBzmwJRoB03oA2gIR0CxA9t25hBrdX2UKGgGR0CI9JtsvZh8aAdN6ANoCEdAsQQVLBbfQHV9lChoBkdAiNQW0zCUHWgHTegDaAhHQLEFocEvCdl1fZQoaAZHQIy/vG2kSEloB03oA2gIR0CxBww/PgNxdX2UKGgGR0B+oOHck+otaAdN6ANoCEdAsQukBEKE4HV9lChoBkdAiLv0PQOWjWgHTegDaAhHQLEL9HDrJKd1fZQoaAZHQIb2HBnBciZoB03oA2gIR0CxDl0Pxx1gdX2UKGgGR0CIYHENOM2naAdN6ANoCEdAsRA8DoyKvXV9lChoBkdAiwl3ueBg/mgHTegDaAhHQLEUTGo73f11fZQoaAZHQIpocFbFCLNoB03oA2gIR0CxFIGxIJ7cdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0bcd0ec9fe3ab6b9b68b472de1f6f4ab3c617b40def717ac2b32257ae60a1317
|
3 |
+
size 917058
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 776.4284168190803, "std_reward": 157.87852825684237, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-02T08:25:06.666494"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2136
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90dd583c4b3b7e349da0c888ec5ad3924ba60a11426a37385b1424092047e959
|
3 |
size 2136
|