|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from math import exp |
|
|
|
class FocalLoss(nn.Module): |
|
""" |
|
copy from: https://github.com/Hsuxu/Loss_ToolBox-PyTorch/blob/master/FocalLoss/FocalLoss.py |
|
This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in |
|
'Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)' |
|
Focal_Loss= -1*alpha*(1-pt)*log(pt) |
|
:param alpha: (tensor) 3D or 4D the scalar factor for this criterion |
|
:param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more |
|
focus on hard misclassified example |
|
:param smooth: (float,double) smooth value when cross entropy |
|
:param balance_index: (int) balance class index, should be specific when alpha is float |
|
:param size_average: (bool, optional) By default, the losses are averaged over each loss element in the batch. |
|
""" |
|
|
|
def __init__(self, apply_nonlin=None, alpha=None, gamma=2, balance_index=0, smooth=1e-5, size_average=True): |
|
super(FocalLoss, self).__init__() |
|
self.apply_nonlin = apply_nonlin |
|
self.alpha = alpha |
|
self.gamma = gamma |
|
self.balance_index = balance_index |
|
self.smooth = smooth |
|
self.size_average = size_average |
|
|
|
if self.smooth is not None: |
|
if self.smooth < 0 or self.smooth > 1.0: |
|
raise ValueError('smooth value should be in [0,1]') |
|
|
|
def forward(self, logit, target): |
|
if self.apply_nonlin is not None: |
|
logit = self.apply_nonlin(logit) |
|
num_class = logit.shape[1] |
|
|
|
if logit.dim() > 2: |
|
|
|
logit = logit.view(logit.size(0), logit.size(1), -1) |
|
logit = logit.permute(0, 2, 1).contiguous() |
|
logit = logit.view(-1, logit.size(-1)) |
|
target = torch.squeeze(target, 1) |
|
target = target.view(-1, 1) |
|
alpha = self.alpha |
|
|
|
if alpha is None: |
|
alpha = torch.ones(num_class, 1) |
|
elif isinstance(alpha, (list, np.ndarray)): |
|
assert len(alpha) == num_class |
|
alpha = torch.FloatTensor(alpha).view(num_class, 1) |
|
alpha = alpha / alpha.sum() |
|
elif isinstance(alpha, float): |
|
alpha = torch.ones(num_class, 1) |
|
alpha = alpha * (1 - self.alpha) |
|
alpha[self.balance_index] = self.alpha |
|
|
|
else: |
|
raise TypeError('Not support alpha type') |
|
|
|
if alpha.device != logit.device: |
|
alpha = alpha.to(logit.device) |
|
|
|
idx = target.cpu().long() |
|
|
|
one_hot_key = torch.FloatTensor(target.size(0), num_class).zero_() |
|
one_hot_key = one_hot_key.scatter_(1, idx, 1) |
|
if one_hot_key.device != logit.device: |
|
one_hot_key = one_hot_key.to(logit.device) |
|
|
|
if self.smooth: |
|
one_hot_key = torch.clamp( |
|
one_hot_key, self.smooth / (num_class - 1), 1.0 - self.smooth) |
|
pt = (one_hot_key * logit).sum(1) + self.smooth |
|
logpt = pt.log() |
|
|
|
gamma = self.gamma |
|
|
|
alpha = alpha[idx] |
|
alpha = torch.squeeze(alpha) |
|
loss = -1 * alpha * torch.pow((1 - pt), gamma) * logpt |
|
|
|
if self.size_average: |
|
loss = loss.mean() |
|
return loss |
|
|
|
|
|
class BinaryDiceLoss(nn.Module): |
|
def __init__(self): |
|
super(BinaryDiceLoss, self).__init__() |
|
|
|
def forward(self, input, targets): |
|
|
|
N = targets.size()[0] |
|
|
|
smooth = 1 |
|
|
|
input_flat = input.view(N, -1) |
|
targets_flat = targets.view(N, -1) |
|
|
|
|
|
intersection = input_flat * targets_flat |
|
N_dice_eff = (2 * intersection.sum(1) + smooth) / (input_flat.sum(1) + targets_flat.sum(1) + smooth) |
|
|
|
loss = 1 - N_dice_eff.sum() / N |
|
return loss |
|
|
|
|
|
|
|
|
|
class ConADLoss(nn.Module): |
|
"""Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf. |
|
It also supports the unsupervised contrastive loss in SimCLR""" |
|
def __init__(self, contrast_mode='all',random_anchors=10): |
|
super(ConADLoss, self).__init__() |
|
assert contrast_mode in ['all', 'mean', 'random'] |
|
self.contrast_mode = contrast_mode |
|
self.random_anchors = random_anchors |
|
def forward(self, features, labels): |
|
"""Compute loss for model. If both `labels` and `mask` are None, |
|
it degenerates to SimCLR unsupervised loss: |
|
https://arxiv.org/pdf/2002.05709.pdf |
|
|
|
Args: |
|
features: hidden vector of shape [bsz, C, ...]. |
|
labels: ground truth of shape [bsz, 1, ...]., where 1 denotes to abnormal, and 0 denotes to normal |
|
Returns: |
|
A loss scalar. |
|
""" |
|
device = (torch.device('cuda') |
|
if features.is_cuda |
|
else torch.device('cpu')) |
|
if len(features.shape) != len(labels.shape): |
|
raise ValueError('`features` needs to have the same dimensions with labels') |
|
|
|
if len(features.shape) < 3: |
|
raise ValueError('`features` needs to be [bsz, C, ...],' |
|
'at least 3 dimensions are required') |
|
|
|
if len(features.shape) > 3: |
|
features = features.view(features.shape[0], features.shape[1], -1) |
|
labels = labels.view(labels.shape[0], labels.shape[1], -1) |
|
|
|
labels = labels.squeeze() |
|
batch_size = features.shape[0] |
|
|
|
C = features.shape[1] |
|
normal_feats = features[:, :, labels == 0] |
|
abnormal_feats = features[:, :, labels == 1] |
|
|
|
normal_feats = normal_feats.permute((1, 0, 2)).contiguous().view(C, -1) |
|
abnormal_feats = abnormal_feats.permute((1, 0, 2)).contiguous().view(C, -1) |
|
|
|
contrast_count = normal_feats.shape[1] |
|
contrast_feature = normal_feats |
|
|
|
if self.contrast_mode == 'mean': |
|
anchor_feature = torch.mean(normal_feats, dim=1) |
|
anchor_feature = F.normalize(anchor_feature, dim=0, p=2) |
|
anchor_count = 1 |
|
elif self.contrast_mode == 'all': |
|
anchor_feature = contrast_feature |
|
anchor_count = contrast_count |
|
elif self.contrast_mode == 'random': |
|
dim_to_sample = 1 |
|
num_samples = min(self.random_anchors, contrast_count) |
|
permuted_indices = torch.randperm(normal_feats.size(dim_to_sample)).to(normal_feats.device) |
|
selected_indices = permuted_indices[:num_samples] |
|
anchor_feature = normal_feats.index_select(dim_to_sample, selected_indices) |
|
else: |
|
raise ValueError('Unknown mode: {}'.format(self.contrast_mode)) |
|
|
|
|
|
|
|
anchor_dot_normal = torch.matmul(anchor_feature.T, normal_feats).mean() |
|
|
|
|
|
anchor_dot_abnormal = torch.matmul(anchor_feature.T, abnormal_feats).mean() |
|
|
|
loss = 0 |
|
if normal_feats.shape[1] > 0: |
|
loss -= anchor_dot_normal |
|
if abnormal_feats.shape[1] > 0: |
|
loss += anchor_dot_abnormal |
|
|
|
loss = torch.exp(loss) |
|
|
|
return loss |
|
|