smithlai commited on
Commit
e719b1a
·
1 Parent(s): 112a136

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 157.18 +/- 117.95
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 266.48 +/- 12.85
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdc4bbf9900>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdc4bbf9990>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdc4bbf9a20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdc4bbf9ab0>", "_build": "<function ActorCriticPolicy._build at 0x7fdc4bbf9b40>", "forward": "<function ActorCriticPolicy.forward at 0x7fdc4bbf9bd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdc4bbf9c60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdc4bbf9cf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdc4bbf9d80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdc4bbf9e10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdc4bbf9ea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdc4bbf9f30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdc4bbf3cc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689141175312294150, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqejL3319g+nKrJva1Yj77hExq9sqSWvQAAAAAAAAAAQIkvPumBaLy9Y5W7PAUvvhNgz73FthC/AACAPwAAgD/m/DU+7FyaPCIPLr5tbwS+tJrwu5SaIz8AAIA/AAAAAPprjr5tT0k+hiYMPhL0Dr6Q6D672oiPvAAAAAAAAAAAWkIrPnTLlrz2LGc6YWDCuLhxBL7vLJ+5AACAPwAAgD+Q4Fm+bkCQPV+eET2DoDW+BX9AvD+POrwAAAAAAAAAACWij76lxzs/qh5kvswR075ZL/i9gNibPAAAAAAAAAAAPZ1tvr1/ZTz6kqM66ubMuElk/L3NA8e5AACAPwAAgD+aSUQ9heOsuYuCezO3KW4s4bJLO/clrLMAAIA/AACAPyZ3VD7BLcc+I6PYvclVYr5Kgv07OoNtvQAAAAAAAAAAACv2vb+AJD/zzv69IHO7vre2ML3eTDa8AAAAAAAAAAAG07M+dbQGPiAAz72MgCq+hRuZOxyfSb0AAAAAAAAAAMNeVL6L1jw/gIjCu1TquL59eYW8FEQ8PQAAAAAAAAAALWmDvl93ST/RrSe+c++9vl/WE75VzKc9AAAAAAAAAADzH4A9NKfAPpuZ07zNyEG+OcKgvOGipDwAAAAAAAAAAG2MSj6qbok/WonlPmTt3L5sdT8+m5iKPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAzkPYnOSqMAWyUTdwBjAF0lEdAnGaEV8CxNnV9lChoBkdAYQbLIPsiS2gHTegDaAhHQJxrlNATqSp1fZQoaAZHQHA2Xfyf+S9oB00RAWgIR0CcbJV4X40udX2UKGgGR0Bt0Z1V5rxiaAdNDQFoCEdAnG0rxEv0y3V9lChoBkdAcFO+KCQLeGgHS/VoCEdAnG3VYZEUkHV9lChoBkdAcBf3dbgTAWgHTUwBaAhHQJxuAaIeo1l1fZQoaAZHQG2jcbBGhEloB02VAWgIR0Ccbq9uP3i8dX2UKGgGR0BuvLblA/s3aAdNOwFoCEdAnG9F5v99+nV9lChoBkdAR0xuuRs/IWgHS9BoCEdAnG/BUBGQS3V9lChoBkdAcSpMvh60IGgHS/poCEdAnG++cH4XXXV9lChoBkdAcG1C4SYgJWgHTQ8BaAhHQJxw7k+5e7d1fZQoaAZHQF/VDQJHAh1oB03oA2gIR0Cczq+QlruZdX2UKGgGR0BwS95s0pEyaAdL72gIR0Cc0QU/wAlwdX2UKGgGR0BgrWBreqJeaAdN6ANoCEdAnNKIcJdB0XV9lChoBkdAWnHp2U0N0GgHTegDaAhHQJzUoi2UjcF1fZQoaAZHQHCbPSQYDT1oB00HAWgIR0Cc1bv/io87dX2UKGgGR0BwPcHNX5nEaAdNDwFoCEdAnNYSr5qM33V9lChoBkdAbQr5HmRvFWgHTQ8BaAhHQJzXkFt8/lh1fZQoaAZHQGk/LmZE2HdoB01IA2gIR0Cc2DPq9oN/dX2UKGgGR0BrhrG5tm+TaAdNfwJoCEdAnNlrjT8YRHV9lChoBkdAb9lcbiqABmgHS/poCEdAnNo+Ay2x6nV9lChoBkdAcEL+4b0e2mgHTZ8BaAhHQJzbHDsMRYl1fZQoaAZHQGyJwg1WKdhoB03iAWgIR0Cc3F/HHWBjdX2UKGgGR0BwlqNS619faAdNIQFoCEdAnN294eLeh3V9lChoBkdAbXucjqv/zmgHTdUBaAhHQJzdwtuk1uR1fZQoaAZHQHEMBX4j8k5oB02iA2gIR0Cc3er56+nJdX2UKGgGR0BFjSiM5wOwaAdNAQFoCEdAnOBGRaHKwXV9lChoBkdAcD4PpY9xImgHTVMBaAhHQJzgol7dBSl1fZQoaAZHQGyILbxmTTxoB00UAWgIR0Cc4LsXSBsidX2UKGgGR0Btc6SowVTKaAdL+GgIR0Cc4Slar3j/dX2UKGgGR0Bw/r/7zkIYaAdL+GgIR0Cc4ajDsMRZdX2UKGgGR0Bxh413t8eCaAdNaAFoCEdAnOLtzGPxQXV9lChoBkdAa76H31zySWgHS/JoCEdAnOMugte2NXV9lChoBkdAbdSHeJpFkWgHTWQBaAhHQJzm8SxqwhZ1fZQoaAZHQG+rWMS9M9NoB00SAWgIR0Cc6HeEIw/QdX2UKGgGR0BujgOtnwocaAdNBAFoCEdAnOt+FDfFaXV9lChoBkdAaShCQcPvrmgHTWMBaAhHQJzsGE25xzd1fZQoaAZHQG5Y9jwx33ZoB00XAWgIR0Cc7FSQYDT0dX2UKGgGR0BwL3bHp8neaAdNCAFoCEdAnOzjPWxyGXV9lChoBkdAbgR6yB06o2gHTSABaAhHQJztjhKlHjJ1fZQoaAZHQG3e1biZOSJoB0v+aAhHQJzu+ZE2Hcl1fZQoaAZHQG/snOjZcs1oB00rAWgIR0Cc8ULJjlPrdX2UKGgGR0BdANBSk0rLaAdN6ANoCEdAnPGnsw+MZXV9lChoBkdAYiuGdI5HVmgHTegDaAhHQJz0Qkona391fZQoaAZHQGB2d8qnWJ9oB03oA2gIR0Cc9Hfdhy80dX2UKGgGR0BtuY0Mw1ziaAdNHQFoCEdAnPXjFERao3V9lChoBkdAbTfitJWeYmgHTREBaAhHQJz3J34bjtJ1fZQoaAZHQHC3elTFVDNoB0v3aAhHQJz6AC5mRNh1fZQoaAZHQG93YU34sVdoB00PAWgIR0Cc+rD/lyR0dX2UKGgGR0Bu9QsEq2BraAdNEAFoCEdAnPu9WEK3NXV9lChoBkdAcMAezUqhDmgHTSgBaAhHQJz93bUPQOZ1fZQoaAZHQEILe7+T/yZoB0vgaAhHQJz93hsImgJ1fZQoaAZHQHCI5XZGrjpoB00mAWgIR0Cc/lI68xsVdX2UKGgGR0Btgt8stkFwaAdL/GgIR0Cc/6QNkOI7dX2UKGgGR0BpU+WWyC4CaAdNSQFoCEdAnQDICQtBfXV9lChoBkdAaiie3hGYr2gHTS8BaAhHQJ0DRvybx3F1fZQoaAZHQG+JzSsr/bVoB0v8aAhHQJ0DZyYG+sZ1fZQoaAZHQHDNdHhCMP1oB0v0aAhHQJ0E8H/tICl1fZQoaAZHQGxW8m8dxQ1oB0v1aAhHQJ0Fc3YL9dh1fZQoaAZHQGyiFwT/Q0JoB00HAWgIR0CdBuCLMs6JdX2UKGgGR0BwIAID5j6OaAdN2gNoCEdAnQfSIDYAbXV9lChoBkdAbreFUQ04zmgHTRMBaAhHQJ0Iykk8ifR1fZQoaAZHQHFRXuy/sVtoB00PAWgIR0CdCPfT1CgLdX2UKGgGR0BwaUfbKzRhaAdL/WgIR0CdCT/0NBnjdX2UKGgGR0BgoOgJ1JUYaAdN6ANoCEdAnQmdkWhysHV9lChoBkdAbuI7muDBdmgHTTUBaAhHQJ0KCkcjqwB1fZQoaAZHQHB42Hck+otoB0v/aAhHQJ0KafChvit1fZQoaAZHQGABSuIRAbBoB03oA2gIR0CdCrpblijMdX2UKGgGR0A0wFR51Ng0aAdL4GgIR0CdC4MZgogFdX2UKGgGR0BvfJaq0dBCaAdNCQFoCEdAnQyaakRBeHV9lChoBkdAQohUYKpkw2gHS91oCEdAnQylgUlAvHV9lChoBkdAY2sWhysCDGgHTegDaAhHQJ0MxBTn7pF1fZQoaAZHQG8fJdKNAC5oB0v9aAhHQJ0PF67dzn11fZQoaAZHQHB29g4OtnxoB0vuaAhHQJ0QQHdGiHt1fZQoaAZHQHDFHEqDsdFoB00bAWgIR0CdEQBnzxwydX2UKGgGR0BtHKJCSidraAdNCAFoCEdAnRKLVBlcyHV9lChoBkdAcHnMhHLA6GgHTScBaAhHQJ0SmfjCHh11fZQoaAZHQG0GtZFG5MFoB00vAWgIR0CdEyr6+FlDdX2UKGgGR0BwbjuDzyz5aAdNPAFoCEdAnRP+hwl0HXV9lChoBkdAbaqI9kjHGWgHTTIBaAhHQJ0UfR4QjD91fZQoaAZHQHBXEXP7el9oB0voaAhHQJ0UnSb6P811fZQoaAZHQHEnLnTy8SRoB00fAWgIR0CdFSMLncL0dX2UKGgGR0BvuR4B3iaRaAdNCwFoCEdAnRW1Aqur63V9lChoBkdAcGzn9ehPCWgHTSIBaAhHQJ0WmhCdBjZ1fZQoaAZHQG5nEkSmIj5oB0v9aAhHQJ0X0YfnwG51fZQoaAZHQHA/0a/ATIxoB02QAWgIR0CdF8w/PgNxdX2UKGgGR0BswGAPNFBqaAdNDAFoCEdAnRk7PdEb53V9lChoBkdAcDHevpyIYWgHTQsBaAhHQJ0Z1EqlP8B1fZQoaAZHQFvHoPkJa7poB03oA2gIR0CdGuObRWtEdX2UKGgGR0BuO9PN3W4FaAdNBwFoCEdAnRr8ox59mnV9lChoBkdAcQhUWEbo82gHS/loCEdAnRsZle4TbnV9lChoBkdAYNi1baAWi2gHTegDaAhHQJ0bxOGj9GZ1fZQoaAZHQG9974SHuZ1oB00LAWgIR0CdHF34bjtHdX2UKGgGR0BwzsPczqKQaAdNNwFoCEdAnRyImw7kn3V9lChoBkdAb2m/NZ/0/WgHTQ4BaAhHQJ0dcqVhTfl1fZQoaAZHQG3Ldxp+MIhoB00rAWgIR0CdHbvMKTjedX2UKGgGR0BxIOblRxcWaAdNFQFoCEdAnR4yL2pQ13V9lChoBkdAa/SXTmW+oWgHTUcBaAhHQJ0erPhQ3xZ1fZQoaAZHQG30zyBkI5ZoB00PAWgIR0CdHtUUfxMGdX2UKGgGR0BtAZkmQbMpaAdNAwFoCEdAnR+KIJqqO3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVhAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRU8N9XpuyptURHDEmraXutACMA2luY5SKEY1M5K+J2FwCEULI9uqnKpIAdYwKaGFzX3VpbnQzMpRLAYwIdWludGVnZXKUigVmwrO5AHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f951986d5a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f951986d630>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f951986d6c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f951986d750>", "_build": "<function ActorCriticPolicy._build at 0x7f951986d7e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f951986d870>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f951986d900>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f951986d990>", "_predict": "<function ActorCriticPolicy._predict at 0x7f951986da20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f951986dab0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f951986db40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f951986dbd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f951986a1c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689148936722527960, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAO0OAz7kSSo/J4kVPf4tqr4zoMA86BvkOwAAAAAAAAAA80tqPu7WCD/nxCm+RVebvsFa6zwW8gS9AAAAAAAAAACanac8HGQDvO4wSTuQ7JA7UsJivXenjDwAAIA/AACAPzPDNDtpcCS8DSsgOwoSoDyydYa9RtyDPQAAgD8AAIA/mvzZvU99VT+TdYg9MvVtvsJwRb3ALzs9AAAAAAAAAADmfaq9jM61PkXXXTyAo0m+MIZ/vTJsYLsAAAAAAAAAAA18nT6VHDw/WWI4PtW6wr737sU+1gMrvQAAAAAAAAAAejc3PggEZz8EjYg+6Smivi2Wjz6Xg6Q9AAAAAAAAAACmEyO+u4UyPxJZED65BpC+vlsavRTdDT0AAAAAAAAAAABSUjzp4XU+5cz+O+YnRr52q9g9+lOqvAAAAAAAAAAAs06lvaS2RDzBZpg7BxxSvtNsC7xAwgA9AAAAAAAAAAAzpwg9Lv6oP5SKkz6xDdK+f2U9PGHNtD0AAAAAAAAAAC2Xbz6XGIo/2BGvPnM1vL43csw+VLwzPQAAAAAAAAAABltkPqn4Jz9qDVm+LdWkvvUQ57tgZl69AAAAAAAAAAC6yKC+MfxoP3Cpkb6c4sG+eBzivkJTyL0AAAAAAAAAADNetTyPpU+8n0ghvZTThD05Yq87eawGvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEF5uwX668SMAWyUS96MAXSUR0CV5PyfL9uQdX2UKGgGR0Bvj2V9nbqRaAdNKAFoCEdAleWa3mV7hXV9lChoBkdAb6oVRk3CK2gHTUgBaAhHQJXl2o73fyh1fZQoaAZHQG3Sh3zMA3loB00tAWgIR0CV5g2PDHfedX2UKGgGR0BWxNN8E3bVaAdN6ANoCEdAleZSKiwjdHV9lChoBkdAb9MUWVNYbWgHTVUBaAhHQJXmz+zdDY11fZQoaAZHQG6NRLbpNbloB00eAWgIR0CV5wmelKsddX2UKGgGR0BvP+XHBDXwaAdNNQFoCEdAleeK+BYms3V9lChoBkdAcP3hLoOhCmgHTWIBaAhHQJXorWrfcet1fZQoaAZHQHDD5hrnDBNoB01sAWgIR0CV6Vm4AjptdX2UKGgGR0BvEVT72tdSaAdNIAFoCEdAlen0pVjqfXV9lChoBkdAcugxgiNbT2gHTQUBaAhHQJXrNxzaK1p1fZQoaAZHQHINylN1yNpoB01eAWgIR0CV69bcXWOIdX2UKGgGR0Bxqo9q1w5vaAdNHAFoCEdAlezt1hb4anV9lChoBkdAcHtZb6guiGgHTR4BaAhHQJXtm/9Hc1x1fZQoaAZHQHE+L9VFQVNoB00kAWgIR0CV7mRChN/OdX2UKGgGR0BurVHavicYaAdNMgFoCEdAlfAvGZNO/XV9lChoBkdAQMPcvduYQmgHS95oCEdAlfC8vM8oyHV9lChoBkdAcLgE1EVnEmgHTQoBaAhHQJXxBO45Lh91fZQoaAZHQHHjCyt3fQ9oB01GAWgIR0CV8XUzsQd0dX2UKGgGR0BusBmqYJE6aAdNRAFoCEdAlfKycXm/33V9lChoBkdAajfUKArhBWgHTWcBaAhHQJXzQN3GGVR1fZQoaAZHQHHzoScslLRoB01wAWgIR0CV80NsnAqNdX2UKGgGR0BwK/XCj1wpaAdNagFoCEdAlfPXCoCMgnV9lChoBkdAbhkce8wpOWgHTX0BaAhHQJXz4GVzIWB1fZQoaAZHQG34uHN5dGBoB00JAWgIR0CV9R7GNrCWdX2UKGgGR0BGRsajvd/KaAdLxWgIR0CV9RJW/8EWdX2UKGgGR0Bx+ZH4GlhxaAdNXwFoCEdAlfXkIX0oSnV9lChoBkdAcqAHLA57xGgHS/ZoCEdAlfX0cfeUIXV9lChoBkdAcHWcFQl8gWgHTS0BaAhHQJX2k2OyVwB1fZQoaAZHQHGXBXXAdn1oB02CAWgIR0CV92jiXIEKdX2UKGgGR0BvKo+2VmjCaAdNLwFoCEdAlfj1gc94eXV9lChoBkdAcpOQzk6tDGgHTSQBaAhHQJX6SUMXrMV1fZQoaAZHQHMwI0Q9RrJoB00OAWgIR0CV+o64UeuFdX2UKGgGR0BxRrvKEFnqaAdNJAFoCEdAlfsBDCxeLXV9lChoBkdAcE0UIcBEKGgHTRwBaAhHQJX89oQFs551fZQoaAZHQHFFJq/M4cZoB01nAWgIR0CV/YYZVGTcdX2UKGgGR0BwSEAo5PuYaAdNLgFoCEdAlf29xIatLnV9lChoBkdAcdm5avA442gHTSMBaAhHQJX98bKifxt1fZQoaAZHQHG4PwZwXIloB004AWgIR0CV/rxGUfPpdX2UKGgGR0BuN3Kji4rjaAdNHQFoCEdAlf9FJ6IFeXV9lChoBkdAa5NIwudwvWgHTTEBaAhHQJYBFe2NNrV1fZQoaAZHQHG4cZUDMeRoB02sAWgIR0CWAdNC7btadX2UKGgGR0BwBt+2E0zkaAdNMgFoCEdAlgH6fSQYDXV9lChoBkdAbckbONYKY2gHTUsBaAhHQJYB+P3i7051fZQoaAZHQHD1jr/sE7poB01xAWgIR0CWAjuqWC2+dX2UKGgGR0BxpRSVGCqZaAdNLQFoCEdAlgKyYLLIP3V9lChoBkdAUAGNkvsZ52gHS/toCEdAlhcy1y/9HnV9lChoBkdAcLsfxtpEhWgHTSwBaAhHQJYa2GBWge11fZQoaAZHQG8puTaCcwxoB01gAWgIR0CWGuhw2l2vdX2UKGgGR0Byozo/zJ6qaAdL+WgIR0CWG21ZDArQdX2UKGgGR0BwXPlq8DjjaAdNVQFoCEdAlhx/q1PWQXV9lChoBkdAcCCnZTQ3P2gHTRIBaAhHQJYdWLl3hXN1fZQoaAZHQHGtxYA80UJoB00qAWgIR0CWH/0Sh8IBdX2UKGgGR0BwqSUPhAGCaAdNYwFoCEdAliDLWd3B6HV9lChoBkdAbNFUNKAavWgHTU8BaAhHQJYivNIK+i91fZQoaAZHQHALOYc/+sJoB00tAWgIR0CWI3Q/HHWCdX2UKGgGR0BwJbSVnmJWaAdNFAFoCEdAliNuc2BJ7XV9lChoBkdAb9yVpsXSB2gHTR8BaAhHQJYj3xYq5LB1fZQoaAZHQG83VpKzzEtoB00VAWgIR0CWJGGcWj46dX2UKGgGR0Bsn66H0se5aAdNPQFoCEdAliVXndO6/nV9lChoBkdAb+CL+glF+mgHTRwBaAhHQJYlo61b7j11fZQoaAZHQHJnRT850bNoB03cAWgIR0CWJnfixVyWdX2UKGgGR0BwndLteD3/aAdNAQFoCEdAlib/RqoIfXV9lChoBkdAbLrah6By0mgHTYoBaAhHQJYnemEXcg11fZQoaAZHQHJeT90ihWZoB00mAWgIR0CWKCN7SiM6dX2UKGgGR0BzMkmICU5daAdL+2gIR0CWKDRKpT/AdX2UKGgGR0BxCgnc+JP7aAdNOAFoCEdAlijzRMN+b3V9lChoBkdAcMqslsxfwGgHTQcBaAhHQJYp7rSmZVp1fZQoaAZHQHH79oN/e+FoB00lAWgIR0CWLLSIxgy/dX2UKGgGR0BxdiABkqc3aAdNmgFoCEdAlizSsbNr03V9lChoBkdAcbAUpuuRtGgHTREBaAhHQJYtbalDWsl1fZQoaAZHQHIjyq6vq1RoB01xAWgIR0CWLgImPYFrdX2UKGgGR0BxTWcslLOBaAdNRgFoCEdAli5xInSfDnV9lChoBkdAcmODqW1MNGgHTUkBaAhHQJYuhJWeYlZ1fZQoaAZHQHGCiyY5T61oB002AWgIR0CWL+WJJoTPdX2UKGgGR0ByLN8zAN5MaAdNSAFoCEdAljA6AWi1zHV9lChoBkdAcYo2eg+Ql2gHTXEBaAhHQJYwS8kD6nB1fZQoaAZHQHGYM81XNkhoB00qAWgIR0CWMFl9BrvcdX2UKGgGR0BvxcrkKeCkaAdNHQFoCEdAljDZhKDkEXV9lChoBkdAcvdrR0EHMWgHTSwBaAhHQJYw4GqxTsJ1fZQoaAZHQHK2TzI3irFoB00UAWgIR0CWMTHjp9qldX2UKGgGR0ByXba37UG3aAdNJQFoCEdAljG1C1JDmnV9lChoBkdAcmUlKbrkbWgHTTQBaAhHQJYyzV7Qb+91fZQoaAZHQHIm7PQfIS1oB01KAWgIR0CWNHe/pMYedX2UKGgGR0Bx/XL+xW1daAdNBAFoCEdAljWny3CsO3V9lChoBkdAc3x8KohpxmgHTR8BaAhHQJY18LH+6y11fZQoaAZHQHCeR1LamGdoB00fAWgIR0CWNhJ3PiT/dX2UKGgGR0ByiQ3irDIjaAdNCQFoCEdAljb2h7E5yXV9lChoBkdAclA9Gqgh82gHS/VoCEdAljgV+Zw4sHV9lChoBkdAcVbACW/rSmgHTTwBaAhHQJY4wm4RVZN1fZQoaAZHQHAqVK5CngpoB00wAWgIR0CWOl5HVf/ndX2UKGgGR0BwBuh6By0baAdNRAFoCEdAljrIZVGTcXV9lChoBkdAcEZ/3nIQv2gHTUEBaAhHQJY7QDjin511fZQoaAZHQGx0gbyYoiNoB00VAWgIR0CWO3HCoCMhdX2UKGgGR0ByBfRnezlcaAdL/mgIR0CWPA0xM36zdX2UKGgGR0Bvua+ajN6gaAdNpAFoCEdAljyHied073V9lChoBkdAb5MhGpda+2gHTUQBaAhHQJY8m8TSLIh1fZQoaAZHQHFIDCxeLNxoB01bAWgIR0CWPVTyJ9ApdX2UKGgGR0Bv47sSkCV9aAdNfAFoCEdAlj5sTJyQxXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3e1511ff9b71c435c5da2c00b04495efe4f63c33dda855ecc0b5d2bc3135ad1b
3
- size 146972
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36c5a93dbfd492f36d9719d716dac26a9c5a71cd2c24dcfd60094597178c8120
3
+ size 146747
ppo-LunarLander-v2/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdc4bbf9900>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdc4bbf9990>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdc4bbf9a20>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdc4bbf9ab0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fdc4bbf9b40>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fdc4bbf9bd0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdc4bbf9c60>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdc4bbf9cf0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7fdc4bbf9d80>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdc4bbf9e10>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdc4bbf9ea0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdc4bbf9f30>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7fdc4bbf3cc0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
@@ -26,12 +26,12 @@
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1689141175312294150,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqejL3319g+nKrJva1Yj77hExq9sqSWvQAAAAAAAAAAQIkvPumBaLy9Y5W7PAUvvhNgz73FthC/AACAPwAAgD/m/DU+7FyaPCIPLr5tbwS+tJrwu5SaIz8AAIA/AAAAAPprjr5tT0k+hiYMPhL0Dr6Q6D672oiPvAAAAAAAAAAAWkIrPnTLlrz2LGc6YWDCuLhxBL7vLJ+5AACAPwAAgD+Q4Fm+bkCQPV+eET2DoDW+BX9AvD+POrwAAAAAAAAAACWij76lxzs/qh5kvswR075ZL/i9gNibPAAAAAAAAAAAPZ1tvr1/ZTz6kqM66ubMuElk/L3NA8e5AACAPwAAgD+aSUQ9heOsuYuCezO3KW4s4bJLO/clrLMAAIA/AACAPyZ3VD7BLcc+I6PYvclVYr5Kgv07OoNtvQAAAAAAAAAAACv2vb+AJD/zzv69IHO7vre2ML3eTDa8AAAAAAAAAAAG07M+dbQGPiAAz72MgCq+hRuZOxyfSb0AAAAAAAAAAMNeVL6L1jw/gIjCu1TquL59eYW8FEQ8PQAAAAAAAAAALWmDvl93ST/RrSe+c++9vl/WE75VzKc9AAAAAAAAAADzH4A9NKfAPpuZ07zNyEG+OcKgvOGipDwAAAAAAAAAAG2MSj6qbok/WonlPmTt3L5sdT8+m5iKPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -45,13 +45,13 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVLAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAzkPYnOSqMAWyUTdwBjAF0lEdAnGaEV8CxNnV9lChoBkdAYQbLIPsiS2gHTegDaAhHQJxrlNATqSp1fZQoaAZHQHA2Xfyf+S9oB00RAWgIR0CcbJV4X40udX2UKGgGR0Bt0Z1V5rxiaAdNDQFoCEdAnG0rxEv0y3V9lChoBkdAcFO+KCQLeGgHS/VoCEdAnG3VYZEUkHV9lChoBkdAcBf3dbgTAWgHTUwBaAhHQJxuAaIeo1l1fZQoaAZHQG2jcbBGhEloB02VAWgIR0Ccbq9uP3i8dX2UKGgGR0BuvLblA/s3aAdNOwFoCEdAnG9F5v99+nV9lChoBkdAR0xuuRs/IWgHS9BoCEdAnG/BUBGQS3V9lChoBkdAcSpMvh60IGgHS/poCEdAnG++cH4XXXV9lChoBkdAcG1C4SYgJWgHTQ8BaAhHQJxw7k+5e7d1fZQoaAZHQF/VDQJHAh1oB03oA2gIR0Cczq+QlruZdX2UKGgGR0BwS95s0pEyaAdL72gIR0Cc0QU/wAlwdX2UKGgGR0BgrWBreqJeaAdN6ANoCEdAnNKIcJdB0XV9lChoBkdAWnHp2U0N0GgHTegDaAhHQJzUoi2UjcF1fZQoaAZHQHCbPSQYDT1oB00HAWgIR0Cc1bv/io87dX2UKGgGR0BwPcHNX5nEaAdNDwFoCEdAnNYSr5qM33V9lChoBkdAbQr5HmRvFWgHTQ8BaAhHQJzXkFt8/lh1fZQoaAZHQGk/LmZE2HdoB01IA2gIR0Cc2DPq9oN/dX2UKGgGR0BrhrG5tm+TaAdNfwJoCEdAnNlrjT8YRHV9lChoBkdAb9lcbiqABmgHS/poCEdAnNo+Ay2x6nV9lChoBkdAcEL+4b0e2mgHTZ8BaAhHQJzbHDsMRYl1fZQoaAZHQGyJwg1WKdhoB03iAWgIR0Cc3F/HHWBjdX2UKGgGR0BwlqNS619faAdNIQFoCEdAnN294eLeh3V9lChoBkdAbXucjqv/zmgHTdUBaAhHQJzdwtuk1uR1fZQoaAZHQHEMBX4j8k5oB02iA2gIR0Cc3er56+nJdX2UKGgGR0BFjSiM5wOwaAdNAQFoCEdAnOBGRaHKwXV9lChoBkdAcD4PpY9xImgHTVMBaAhHQJzgol7dBSl1fZQoaAZHQGyILbxmTTxoB00UAWgIR0Cc4LsXSBsidX2UKGgGR0Btc6SowVTKaAdL+GgIR0Cc4Slar3j/dX2UKGgGR0Bw/r/7zkIYaAdL+GgIR0Cc4ajDsMRZdX2UKGgGR0Bxh413t8eCaAdNaAFoCEdAnOLtzGPxQXV9lChoBkdAa76H31zySWgHS/JoCEdAnOMugte2NXV9lChoBkdAbdSHeJpFkWgHTWQBaAhHQJzm8SxqwhZ1fZQoaAZHQG+rWMS9M9NoB00SAWgIR0Cc6HeEIw/QdX2UKGgGR0BujgOtnwocaAdNBAFoCEdAnOt+FDfFaXV9lChoBkdAaShCQcPvrmgHTWMBaAhHQJzsGE25xzd1fZQoaAZHQG5Y9jwx33ZoB00XAWgIR0Cc7FSQYDT0dX2UKGgGR0BwL3bHp8neaAdNCAFoCEdAnOzjPWxyGXV9lChoBkdAbgR6yB06o2gHTSABaAhHQJztjhKlHjJ1fZQoaAZHQG3e1biZOSJoB0v+aAhHQJzu+ZE2Hcl1fZQoaAZHQG/snOjZcs1oB00rAWgIR0Cc8ULJjlPrdX2UKGgGR0BdANBSk0rLaAdN6ANoCEdAnPGnsw+MZXV9lChoBkdAYiuGdI5HVmgHTegDaAhHQJz0Qkona391fZQoaAZHQGB2d8qnWJ9oB03oA2gIR0Cc9Hfdhy80dX2UKGgGR0BtuY0Mw1ziaAdNHQFoCEdAnPXjFERao3V9lChoBkdAbTfitJWeYmgHTREBaAhHQJz3J34bjtJ1fZQoaAZHQHC3elTFVDNoB0v3aAhHQJz6AC5mRNh1fZQoaAZHQG93YU34sVdoB00PAWgIR0Cc+rD/lyR0dX2UKGgGR0Bu9QsEq2BraAdNEAFoCEdAnPu9WEK3NXV9lChoBkdAcMAezUqhDmgHTSgBaAhHQJz93bUPQOZ1fZQoaAZHQEILe7+T/yZoB0vgaAhHQJz93hsImgJ1fZQoaAZHQHCI5XZGrjpoB00mAWgIR0Cc/lI68xsVdX2UKGgGR0Btgt8stkFwaAdL/GgIR0Cc/6QNkOI7dX2UKGgGR0BpU+WWyC4CaAdNSQFoCEdAnQDICQtBfXV9lChoBkdAaiie3hGYr2gHTS8BaAhHQJ0DRvybx3F1fZQoaAZHQG+JzSsr/bVoB0v8aAhHQJ0DZyYG+sZ1fZQoaAZHQHDNdHhCMP1oB0v0aAhHQJ0E8H/tICl1fZQoaAZHQGxW8m8dxQ1oB0v1aAhHQJ0Fc3YL9dh1fZQoaAZHQGyiFwT/Q0JoB00HAWgIR0CdBuCLMs6JdX2UKGgGR0BwIAID5j6OaAdN2gNoCEdAnQfSIDYAbXV9lChoBkdAbreFUQ04zmgHTRMBaAhHQJ0Iykk8ifR1fZQoaAZHQHFRXuy/sVtoB00PAWgIR0CdCPfT1CgLdX2UKGgGR0BwaUfbKzRhaAdL/WgIR0CdCT/0NBnjdX2UKGgGR0BgoOgJ1JUYaAdN6ANoCEdAnQmdkWhysHV9lChoBkdAbuI7muDBdmgHTTUBaAhHQJ0KCkcjqwB1fZQoaAZHQHB42Hck+otoB0v/aAhHQJ0KafChvit1fZQoaAZHQGABSuIRAbBoB03oA2gIR0CdCrpblijMdX2UKGgGR0A0wFR51Ng0aAdL4GgIR0CdC4MZgogFdX2UKGgGR0BvfJaq0dBCaAdNCQFoCEdAnQyaakRBeHV9lChoBkdAQohUYKpkw2gHS91oCEdAnQylgUlAvHV9lChoBkdAY2sWhysCDGgHTegDaAhHQJ0MxBTn7pF1fZQoaAZHQG8fJdKNAC5oB0v9aAhHQJ0PF67dzn11fZQoaAZHQHB29g4OtnxoB0vuaAhHQJ0QQHdGiHt1fZQoaAZHQHDFHEqDsdFoB00bAWgIR0CdEQBnzxwydX2UKGgGR0BtHKJCSidraAdNCAFoCEdAnRKLVBlcyHV9lChoBkdAcHnMhHLA6GgHTScBaAhHQJ0SmfjCHh11fZQoaAZHQG0GtZFG5MFoB00vAWgIR0CdEyr6+FlDdX2UKGgGR0BwbjuDzyz5aAdNPAFoCEdAnRP+hwl0HXV9lChoBkdAbaqI9kjHGWgHTTIBaAhHQJ0UfR4QjD91fZQoaAZHQHBXEXP7el9oB0voaAhHQJ0UnSb6P811fZQoaAZHQHEnLnTy8SRoB00fAWgIR0CdFSMLncL0dX2UKGgGR0BvuR4B3iaRaAdNCwFoCEdAnRW1Aqur63V9lChoBkdAcGzn9ehPCWgHTSIBaAhHQJ0WmhCdBjZ1fZQoaAZHQG5nEkSmIj5oB0v9aAhHQJ0X0YfnwG51fZQoaAZHQHA/0a/ATIxoB02QAWgIR0CdF8w/PgNxdX2UKGgGR0BswGAPNFBqaAdNDAFoCEdAnRk7PdEb53V9lChoBkdAcDHevpyIYWgHTQsBaAhHQJ0Z1EqlP8B1fZQoaAZHQFvHoPkJa7poB03oA2gIR0CdGuObRWtEdX2UKGgGR0BuO9PN3W4FaAdNBwFoCEdAnRr8ox59mnV9lChoBkdAcQhUWEbo82gHS/loCEdAnRsZle4TbnV9lChoBkdAYNi1baAWi2gHTegDaAhHQJ0bxOGj9GZ1fZQoaAZHQG9974SHuZ1oB00LAWgIR0CdHF34bjtHdX2UKGgGR0BwzsPczqKQaAdNNwFoCEdAnRyImw7kn3V9lChoBkdAb2m/NZ/0/WgHTQ4BaAhHQJ0dcqVhTfl1fZQoaAZHQG3Ldxp+MIhoB00rAWgIR0CdHbvMKTjedX2UKGgGR0BxIOblRxcWaAdNFQFoCEdAnR4yL2pQ13V9lChoBkdAa/SXTmW+oWgHTUcBaAhHQJ0erPhQ3xZ1fZQoaAZHQG30zyBkI5ZoB00PAWgIR0CdHtUUfxMGdX2UKGgGR0BtAZkmQbMpaAdNAwFoCEdAnR+KIJqqO3VlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 310,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -69,22 +69,22 @@
69
  },
70
  "action_space": {
71
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
- ":serialized:": "gAWVhAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRU8N9XpuyptURHDEmraXutACMA2luY5SKEY1M5K+J2FwCEULI9uqnKpIAdYwKaGFzX3VpbnQzMpRLAYwIdWludGVnZXKUigVmwrO5AHVidWIu",
73
  "n": "4",
74
  "start": "0",
75
  "_shape": [],
76
  "dtype": "int64",
77
- "_np_random": "Generator(PCG64)"
78
  },
79
  "n_envs": 16,
80
- "n_steps": 2048,
81
- "gamma": 0.99,
82
- "gae_lambda": 0.95,
83
- "ent_coef": 0.0,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
- "n_epochs": 10,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f951986d5a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f951986d630>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f951986d6c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f951986d750>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f951986d7e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f951986d870>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f951986d900>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f951986d990>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f951986da20>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f951986dab0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f951986db40>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f951986dbd0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f951986a1c0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1689148936722527960,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAO0OAz7kSSo/J4kVPf4tqr4zoMA86BvkOwAAAAAAAAAA80tqPu7WCD/nxCm+RVebvsFa6zwW8gS9AAAAAAAAAACanac8HGQDvO4wSTuQ7JA7UsJivXenjDwAAIA/AACAPzPDNDtpcCS8DSsgOwoSoDyydYa9RtyDPQAAgD8AAIA/mvzZvU99VT+TdYg9MvVtvsJwRb3ALzs9AAAAAAAAAADmfaq9jM61PkXXXTyAo0m+MIZ/vTJsYLsAAAAAAAAAAA18nT6VHDw/WWI4PtW6wr737sU+1gMrvQAAAAAAAAAAejc3PggEZz8EjYg+6Smivi2Wjz6Xg6Q9AAAAAAAAAACmEyO+u4UyPxJZED65BpC+vlsavRTdDT0AAAAAAAAAAABSUjzp4XU+5cz+O+YnRr52q9g9+lOqvAAAAAAAAAAAs06lvaS2RDzBZpg7BxxSvtNsC7xAwgA9AAAAAAAAAAAzpwg9Lv6oP5SKkz6xDdK+f2U9PGHNtD0AAAAAAAAAAC2Xbz6XGIo/2BGvPnM1vL43csw+VLwzPQAAAAAAAAAABltkPqn4Jz9qDVm+LdWkvvUQ57tgZl69AAAAAAAAAAC6yKC+MfxoP3Cpkb6c4sG+eBzivkJTyL0AAAAAAAAAADNetTyPpU+8n0ghvZTThD05Yq87eawGvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEF5uwX668SMAWyUS96MAXSUR0CV5PyfL9uQdX2UKGgGR0Bvj2V9nbqRaAdNKAFoCEdAleWa3mV7hXV9lChoBkdAb6oVRk3CK2gHTUgBaAhHQJXl2o73fyh1fZQoaAZHQG3Sh3zMA3loB00tAWgIR0CV5g2PDHfedX2UKGgGR0BWxNN8E3bVaAdN6ANoCEdAleZSKiwjdHV9lChoBkdAb9MUWVNYbWgHTVUBaAhHQJXmz+zdDY11fZQoaAZHQG6NRLbpNbloB00eAWgIR0CV5wmelKsddX2UKGgGR0BvP+XHBDXwaAdNNQFoCEdAleeK+BYms3V9lChoBkdAcP3hLoOhCmgHTWIBaAhHQJXorWrfcet1fZQoaAZHQHDD5hrnDBNoB01sAWgIR0CV6Vm4AjptdX2UKGgGR0BvEVT72tdSaAdNIAFoCEdAlen0pVjqfXV9lChoBkdAcugxgiNbT2gHTQUBaAhHQJXrNxzaK1p1fZQoaAZHQHINylN1yNpoB01eAWgIR0CV69bcXWOIdX2UKGgGR0Bxqo9q1w5vaAdNHAFoCEdAlezt1hb4anV9lChoBkdAcHtZb6guiGgHTR4BaAhHQJXtm/9Hc1x1fZQoaAZHQHE+L9VFQVNoB00kAWgIR0CV7mRChN/OdX2UKGgGR0BurVHavicYaAdNMgFoCEdAlfAvGZNO/XV9lChoBkdAQMPcvduYQmgHS95oCEdAlfC8vM8oyHV9lChoBkdAcLgE1EVnEmgHTQoBaAhHQJXxBO45Lh91fZQoaAZHQHHjCyt3fQ9oB01GAWgIR0CV8XUzsQd0dX2UKGgGR0BusBmqYJE6aAdNRAFoCEdAlfKycXm/33V9lChoBkdAajfUKArhBWgHTWcBaAhHQJXzQN3GGVR1fZQoaAZHQHHzoScslLRoB01wAWgIR0CV80NsnAqNdX2UKGgGR0BwK/XCj1wpaAdNagFoCEdAlfPXCoCMgnV9lChoBkdAbhkce8wpOWgHTX0BaAhHQJXz4GVzIWB1fZQoaAZHQG34uHN5dGBoB00JAWgIR0CV9R7GNrCWdX2UKGgGR0BGRsajvd/KaAdLxWgIR0CV9RJW/8EWdX2UKGgGR0Bx+ZH4GlhxaAdNXwFoCEdAlfXkIX0oSnV9lChoBkdAcqAHLA57xGgHS/ZoCEdAlfX0cfeUIXV9lChoBkdAcHWcFQl8gWgHTS0BaAhHQJX2k2OyVwB1fZQoaAZHQHGXBXXAdn1oB02CAWgIR0CV92jiXIEKdX2UKGgGR0BvKo+2VmjCaAdNLwFoCEdAlfj1gc94eXV9lChoBkdAcpOQzk6tDGgHTSQBaAhHQJX6SUMXrMV1fZQoaAZHQHMwI0Q9RrJoB00OAWgIR0CV+o64UeuFdX2UKGgGR0BxRrvKEFnqaAdNJAFoCEdAlfsBDCxeLXV9lChoBkdAcE0UIcBEKGgHTRwBaAhHQJX89oQFs551fZQoaAZHQHFFJq/M4cZoB01nAWgIR0CV/YYZVGTcdX2UKGgGR0BwSEAo5PuYaAdNLgFoCEdAlf29xIatLnV9lChoBkdAcdm5avA442gHTSMBaAhHQJX98bKifxt1fZQoaAZHQHG4PwZwXIloB004AWgIR0CV/rxGUfPpdX2UKGgGR0BuN3Kji4rjaAdNHQFoCEdAlf9FJ6IFeXV9lChoBkdAa5NIwudwvWgHTTEBaAhHQJYBFe2NNrV1fZQoaAZHQHG4cZUDMeRoB02sAWgIR0CWAdNC7btadX2UKGgGR0BwBt+2E0zkaAdNMgFoCEdAlgH6fSQYDXV9lChoBkdAbckbONYKY2gHTUsBaAhHQJYB+P3i7051fZQoaAZHQHD1jr/sE7poB01xAWgIR0CWAjuqWC2+dX2UKGgGR0BxpRSVGCqZaAdNLQFoCEdAlgKyYLLIP3V9lChoBkdAUAGNkvsZ52gHS/toCEdAlhcy1y/9HnV9lChoBkdAcLsfxtpEhWgHTSwBaAhHQJYa2GBWge11fZQoaAZHQG8puTaCcwxoB01gAWgIR0CWGuhw2l2vdX2UKGgGR0Byozo/zJ6qaAdL+WgIR0CWG21ZDArQdX2UKGgGR0BwXPlq8DjjaAdNVQFoCEdAlhx/q1PWQXV9lChoBkdAcCCnZTQ3P2gHTRIBaAhHQJYdWLl3hXN1fZQoaAZHQHGtxYA80UJoB00qAWgIR0CWH/0Sh8IBdX2UKGgGR0BwqSUPhAGCaAdNYwFoCEdAliDLWd3B6HV9lChoBkdAbNFUNKAavWgHTU8BaAhHQJYivNIK+i91fZQoaAZHQHALOYc/+sJoB00tAWgIR0CWI3Q/HHWCdX2UKGgGR0BwJbSVnmJWaAdNFAFoCEdAliNuc2BJ7XV9lChoBkdAb9yVpsXSB2gHTR8BaAhHQJYj3xYq5LB1fZQoaAZHQG83VpKzzEtoB00VAWgIR0CWJGGcWj46dX2UKGgGR0Bsn66H0se5aAdNPQFoCEdAliVXndO6/nV9lChoBkdAb+CL+glF+mgHTRwBaAhHQJYlo61b7j11fZQoaAZHQHJnRT850bNoB03cAWgIR0CWJnfixVyWdX2UKGgGR0BwndLteD3/aAdNAQFoCEdAlib/RqoIfXV9lChoBkdAbLrah6By0mgHTYoBaAhHQJYnemEXcg11fZQoaAZHQHJeT90ihWZoB00mAWgIR0CWKCN7SiM6dX2UKGgGR0BzMkmICU5daAdL+2gIR0CWKDRKpT/AdX2UKGgGR0BxCgnc+JP7aAdNOAFoCEdAlijzRMN+b3V9lChoBkdAcMqslsxfwGgHTQcBaAhHQJYp7rSmZVp1fZQoaAZHQHH79oN/e+FoB00lAWgIR0CWLLSIxgy/dX2UKGgGR0BxdiABkqc3aAdNmgFoCEdAlizSsbNr03V9lChoBkdAcbAUpuuRtGgHTREBaAhHQJYtbalDWsl1fZQoaAZHQHIjyq6vq1RoB01xAWgIR0CWLgImPYFrdX2UKGgGR0BxTWcslLOBaAdNRgFoCEdAli5xInSfDnV9lChoBkdAcmODqW1MNGgHTUkBaAhHQJYuhJWeYlZ1fZQoaAZHQHGCiyY5T61oB002AWgIR0CWL+WJJoTPdX2UKGgGR0ByLN8zAN5MaAdNSAFoCEdAljA6AWi1zHV9lChoBkdAcYo2eg+Ql2gHTXEBaAhHQJYwS8kD6nB1fZQoaAZHQHGYM81XNkhoB00qAWgIR0CWMFl9BrvcdX2UKGgGR0BvxcrkKeCkaAdNHQFoCEdAljDZhKDkEXV9lChoBkdAcvdrR0EHMWgHTSwBaAhHQJYw4GqxTsJ1fZQoaAZHQHK2TzI3irFoB00UAWgIR0CWMTHjp9qldX2UKGgGR0ByXba37UG3aAdNJQFoCEdAljG1C1JDmnV9lChoBkdAcmUlKbrkbWgHTTQBaAhHQJYyzV7Qb+91fZQoaAZHQHIm7PQfIS1oB01KAWgIR0CWNHe/pMYedX2UKGgGR0Bx/XL+xW1daAdNBAFoCEdAljWny3CsO3V9lChoBkdAc3x8KohpxmgHTR8BaAhHQJY18LH+6y11fZQoaAZHQHCeR1LamGdoB00fAWgIR0CWNhJ3PiT/dX2UKGgGR0ByiQ3irDIjaAdNCQFoCEdAljb2h7E5yXV9lChoBkdAclA9Gqgh82gHS/VoCEdAljgV+Zw4sHV9lChoBkdAcVbACW/rSmgHTTwBaAhHQJY4wm4RVZN1fZQoaAZHQHAqVK5CngpoB00wAWgIR0CWOl5HVf/ndX2UKGgGR0BwBuh6By0baAdNRAFoCEdAljrIZVGTcXV9lChoBkdAcEZ/3nIQv2gHTUEBaAhHQJY7QDjin511fZQoaAZHQGx0gbyYoiNoB00VAWgIR0CWO3HCoCMhdX2UKGgGR0ByBfRnezlcaAdL/mgIR0CWPA0xM36zdX2UKGgGR0Bvua+ajN6gaAdNpAFoCEdAljyHied073V9lChoBkdAb5MhGpda+2gHTUQBaAhHQJY8m8TSLIh1fZQoaAZHQHFIDCxeLNxoB01bAWgIR0CWPVTyJ9ApdX2UKGgGR0Bv47sSkCV9aAdNfAFoCEdAlj5sTJyQxXVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
69
  },
70
  "action_space": {
71
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
  "n": "4",
74
  "start": "0",
75
  "_shape": [],
76
  "dtype": "int64",
77
+ "_np_random": null
78
  },
79
  "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
+ "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:594cf31c930329c93d8cb07952148549136283f7699d1afa27cc70b5ae363c02
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:311c2d7a99d7bedd428bd19bbbb2df37da4cc43a46e5527fd4f01afcd542c8b3
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2a0b52c48bc6c175fdaf6f2f4006207c3ee20fb6a76e5ad1bb01ff1b96d0414e
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21c9ff3bcb68aa68d3366ad142020de80c4b5173b5a7528c9851c0fc70558a72
3
  size 43329
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 157.1773384, "std_reward": 117.95248616981429, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-12T06:34:31.276946"}
 
1
+ {"mean_reward": 266.4845745, "std_reward": 12.854555398955503, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-12T08:32:11.250035"}