smitbutle commited on
Commit
7ea72ab
1 Parent(s): 07ab1f7

End of training

Browse files
Files changed (1) hide show
  1. README.md +109 -0
README.md ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ base_model: microsoft/layoutlmv3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - generated
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: document-data-extraction-layoutlmv3
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: generated
21
+ type: generated
22
+ config: sroie
23
+ split: test
24
+ args: sroie
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 1.0
29
+ - name: Recall
30
+ type: recall
31
+ value: 1.0
32
+ - name: F1
33
+ type: f1
34
+ value: 1.0
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 1.0
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # document-data-extraction-layoutlmv3
44
+
45
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the generated dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.0015
48
+ - Precision: 1.0
49
+ - Recall: 1.0
50
+ - F1: 1.0
51
+ - Accuracy: 1.0
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 1e-05
71
+ - train_batch_size: 1
72
+ - eval_batch_size: 1
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - training_steps: 2000
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 1.0 | 100 | 0.1114 | 0.95 | 0.9635 | 0.9567 | 0.9947 |
83
+ | No log | 2.0 | 200 | 0.0286 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
84
+ | No log | 3.0 | 300 | 0.0184 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
85
+ | No log | 4.0 | 400 | 0.0163 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
86
+ | 0.1385 | 5.0 | 500 | 0.0141 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
87
+ | 0.1385 | 6.0 | 600 | 0.0123 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
88
+ | 0.1385 | 7.0 | 700 | 0.0122 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
89
+ | 0.1385 | 8.0 | 800 | 0.0108 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
90
+ | 0.1385 | 9.0 | 900 | 0.0104 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
91
+ | 0.0119 | 10.0 | 1000 | 0.0113 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
92
+ | 0.0119 | 11.0 | 1100 | 0.0080 | 0.974 | 0.9878 | 0.9809 | 0.9973 |
93
+ | 0.0119 | 12.0 | 1200 | 0.0089 | 0.9856 | 0.9736 | 0.9796 | 0.9973 |
94
+ | 0.0119 | 13.0 | 1300 | 0.0034 | 0.9959 | 0.9959 | 0.9959 | 0.9994 |
95
+ | 0.0119 | 14.0 | 1400 | 0.0037 | 0.9980 | 0.9939 | 0.9959 | 0.9994 |
96
+ | 0.006 | 15.0 | 1500 | 0.0024 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
97
+ | 0.006 | 16.0 | 1600 | 0.0019 | 0.9980 | 1.0 | 0.9990 | 0.9998 |
98
+ | 0.006 | 17.0 | 1700 | 0.0022 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
99
+ | 0.006 | 18.0 | 1800 | 0.0017 | 1.0 | 1.0 | 1.0 | 1.0 |
100
+ | 0.006 | 19.0 | 1900 | 0.0015 | 1.0 | 1.0 | 1.0 | 1.0 |
101
+ | 0.0027 | 20.0 | 2000 | 0.0015 | 1.0 | 1.0 | 1.0 | 1.0 |
102
+
103
+
104
+ ### Framework versions
105
+
106
+ - Transformers 4.36.0.dev0
107
+ - Pytorch 2.1.1+cu121
108
+ - Datasets 2.15.0
109
+ - Tokenizers 0.15.0