smatt92 commited on
Commit
82b6d11
·
verified ·
1 Parent(s): 49228c2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -0
README.md CHANGED
@@ -28,6 +28,41 @@ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines
28
  ## Usage (with Stable-baselines3)
29
  TODO: Add your code
30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  ```python
33
  from stable_baselines3 import ...
 
28
  ## Usage (with Stable-baselines3)
29
  TODO: Add your code
30
 
31
+ # Create environment
32
+ env = gym.make('LunarLander-v2')
33
+ # Instantiate the agent
34
+ model = PPO('MlpPolicy', env, verbose=1)
35
+ # Train the agent
36
+ model.learn(total_timesteps=int(2e5))
37
+
38
+ # TODO: Define a PPO MlpPolicy architecture
39
+ # We use MultiLayerPerceptron (MLPPolicy) because the input is a vector,
40
+ # if we had frames as input we would use CnnPolicy
41
+ model = PPO(
42
+ policy = 'MlpPolicy',
43
+ env = env,
44
+ n_steps = 4096,
45
+ batch_size = 128,
46
+ n_epochs = 8,
47
+ gamma = 0.999,
48
+ gae_lambda = 0.98,
49
+ ent_coef = 0.01,
50
+ verbose=1)
51
+
52
+ # TODO: Train it for 1,000,000 timesteps
53
+ model.learn(total_timesteps=2000000)
54
+ # TODO: Specify file name for model and save the model to file
55
+ model_name = "ppo-LunarLander-v2"
56
+ model.save(model_name)
57
+
58
+ # TODO: Evaluate the agent
59
+ # Create a new environment for evaluation
60
+ eval_env = Monitor(gym.make("LunarLander-v2"))
61
+ # Evaluate the model with 10 evaluation episodes and deterministic=True
62
+ mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
63
+ # Print the results
64
+ print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
65
+
66
 
67
  ```python
68
  from stable_baselines3 import ...